Island Biology

La Réunion
8-13 July 2019

Université de la Réunion
Campus du Moufia
Island Biology

Book of Abstracts

Talks

Third International Conference on Island Ecology, Evolution and Conservation

8-13 July 2019
University of La Réunion
Saint Denis, France

Editors: Olivier Flores, Claudine Ah-Peng, Nicholas Wilding
This version of the conference Book of Abstracts contains abstracts for oral presentations arranged by day and topics.
Table of contents

Monday, July 8th 2019

Plenary Sessions

- Introduction to natural history of the Mascarene islands, Dominique Strasberg .. 15
- The history, current status, and future of the protected areas of Madagascar, Steven M. Goodman ... 16

Biogeography

- Functional disharmony of the flora of New Caledonia: filtering effect of ultramafic soils and metal accumulation syndrome, Sandrine Isnard [et al.] ... 18
- A functional biogeography approach to insular bird communities with mixed-origin species, Jean-Yves Barnagaud [et al.] ... 20
- Dispersal modality determines the relative partitioning of beta diversity in spiders on a subtropical land-bridge archipelago, Lingbing Wu ... 21
- Phylogeography of coronavirus in bats in the Western Indian Ocean, Léa Joffrin [et al.] ... 22
- The forgotten hotspot: a decade of research into the herpetofauna of the Comoros Archipelago, Oliver Hawlitschek ... 23
- The role of ecological specialization in patterns of insular communities, Spyros Sfenthourakis [et al.] ... 24
- Systems, landscapes and vegetation of the Iles Eparses (South-West Indian Ocean): geobotanical survey of Europa island, Vincent Boullet [et al.] ... 25

Evolution on Islands

- Genetic structure of two genera of Sumatran frogs trace back to ancient volcanic islands origins rather than paleodrainage systems, Umilaela Arifin [et al.] ... 27
- Factors of population divergence and past demographic history in an endemic tree (Coffea mauritiana) from Reunion Island, Edith Garot [et al.] ... 28
- Niches in time: Molecular gut content analysis reveals changing ecological relationships among Hawaiian Tetragnatha spiders along a chronosequence, Susan Kennedy [et al.] ... 29
- The genomics of founder events in an island colonising bird, Sonya Clegg [et al.] ... 30
- Chloroplast haplotype analysis of Canary islands Micromeria indicate inter-island colonization as factor to explain genetic diversity patterns, Harald Meimberg [et al.] ... 31
- Adaptive consequences of introgression during the differentiation of Micromeria in the Canary islands, Manuel Curto [et al.] ... 32
- Evolution of reproductive barriers in sympatric Arctic charr morphs in Thingvallavatn (Iceland), Kalina Kapralova [et al.] ... 33

Interdisciplinary Island Studies

- 33
Detecting burnt scars from space: A case study of the January 2019 wildfires along the
eastern flank of Piton de la Fournaise Volcano, La Réunion, Thibault Catry [et al.] . . .

35

Spatial footprint of natural disasters: opportunities and challenges for remote sensing in
the south-western Indian Ocean, Christophe Révillion [et al.]

36

Anoles & Drones: Revealing controls on distribution and microhabitat use of Anolis
lizards in a changing island landscape using emerging remote sensing technologies, Emma
Higgins [et al.] .

37

An open network to monitor marine environment and species, Sylvain Bonhommeau [et
al.] .

38

Marine sponges from Indian Ocean, a highly promising source for the discovery of novel
bioactive compounds to fight against ageing and age-related diseases, Pierre-Eric Campos [et al.] .

39

Monitoring of fish communities and benthic habitats from unbaited underwater video
techniques with applications to Indian Ocean conservation and fisheries management
challenges, David Roos [et al.] .

40

Isolated Indian Ocean islands: little POPs, some heavy metals, and much plastics, Hindrik Bouwman [et al.] .

41

Unsanctioned imports: the problem of plastic debris in small island states, April Burt .

42

Marine Ecology

42

Long-term monitoring of coral reefs in the Mozambique Channel (Indian Ocean): paving
the way towards integrative regional management, Pascale Chabanet [et al.]

44

Functional vulnerability in Western Indian coral reef fishes: indicator species and conservation priorities, François Guilhaumon [et al.] .

46

Energy packing of reef fish communities in isolated oceanic islands, Diego Barneche . . .

47

Multi-scale effects of environmental stress on reef fish communities of the Galapagos
islands, Robert W. Lamb [et al.] .

48

A continent-island model of gene flow in a marine fish from the Western Indian Ocean, Thierry
Hoareau [et al.] . 49
The Alcyonacea (Octocorallia) on coral reefs at Europa Island: How are they connected
with other soft coral communities in the Mozambique Channel?, Michael Schleyer [et al.] 50
Environmental drivers effects on the structure and functioning of rhodolith marine habitats in Central-Eastern Atlantic Islands, Otero Ferrer Francisco [et al.]

51

What functional space to use to characterize species functions in ecosystems?, Thomas
Claverie [et al.] .

52

A tale of two islands: Reunion and Kauai, similar conservation challenges and
solutions (Symp.)

53

Integrating predator control efforts to achieve landscape level protections for native birds
& their habitats on Kauai Island, Sheri Mann .

55

Improving effectiveness of alien plant clearing on Reunion Island through partnership, Elise
Amy [et al.] .

56

Race against time: research and conservation efforts to save Kauai’s endangered song
birds, Lisa Crampton .

57

LIFE BIODIV’OM – An ambitious program (2018 – 2023) for the conservation of a
critically endangered forest bird , the Reunion Cuckooshrike, D Fouillot [et al.]

58

2


Human caused mortality crisis for the endangered seabirds of Kaua‘i: quantifying the impact of power line collisions and light attraction, Marc Travers [et al.] 59

Unexpected advances for endangered endemic petrels conservation on Reunion Island, Patrick Pinet [et al.] ... 60

Evolutionary trends in island plants: is everything lost on islands? (Symp.) 60

The loss of size diversity in island plants, Kevin Burns .. 62

Loss of defenses on island plants: from theory to evidence, Carlos Garcia-Verdugo [et al.] 63

Are genetic diversity patterns cogent with a generalized loss of dispersal in island plants? Insights from Macaronesia, Juli Caujapé-Castells [et al.] 64

Loss of pollination syndromes after island colonization, T Pailler 65

What do wind-dispersed species tell us about loss of dispersal potential on islands?, Mario Mairal ... 66

Synthesizing island biodiversity theory for community-wide genetic data (Symp.) 66

Origins of diversity on islands: the nexus of ecology and evolution in community assembly, Rosemary Gillespie [et al.] ... 68

Island biogeography and the distribution of genetic variation in ecological communities, Isaac Overcast ... 69

Assessing the drivers of biodiversity patterns using environmental DNA data: macroecology and macroevolution of the oceanic plankton, Hélène Morlon [et al.] 70

Diversifying as a holobiont: macroevolutionary patterns of microbiota in an island archipelago, Benoît Perez-Lamarque [et al.] ... 71

Whole-community assembly from metabarcoding data reveals the structure of the soil mesofauna at multiple genetic levels and spatial scales, Paula Arribas [et al.] 72

Plant conservation on oceanic islands: scientific needs and examples of good practice to solve imminent challenges (Symp.) 72

Identifying a network of Tropical Important Plant Areas (TIPAs) in the British Virgin Islands, Michele Dani Sanchez [et al.] ... 74

The transition to selfing and its implications for the conservation of small insular plant populations: a case study from Tolpis succulenta in the Azores, D. J. Crawford [et al.] 75

Conserving the threatened Puerto Rican endemic plant, Varronia bellonis (Cordiaceae), Martin A. Hamilton [et al.] ... 76

The conservation of New Caledonian rare and endangered species threatened by mining activities, the need of a global approach for a big challenge, Bruno Fogliani [et al.] 77

Ex situ seed conservation of Hawaiian ‘exceptional species’ as a case study for tropical island floras, Marian M. Chau [et al.] ... 78

The IUCN Plant specialist group for Macaronesia: Using transnational cooperation and updated scientific data to better understand and mitigate the threats to oceanic island floras, Mónica Moura [et al.] ... 79

The IUCN Seed Conservation Specialist Group: Connecting experts, identifying gaps, and developing best practices, Uromi M. Goodale [et al.] ... 80

Red Lists and open data: how the New Caledonia Plant Red List Authority has brought together environment professionals, scientists and amateur experts, Shankar Meyer [et al.] 81
Strategies for conservation of endemic species in protected areas of Cabo Verde islands, Herculano Andrade Dinis [et al.] .. 82
Conservation of crop wild relatives of Macaronesian Islands: current status and outlook, Maria Romeiras [et al.] .. 83

Tuesday, July 9th 2019 84

Plenary Sessions 85
The island biogeography of alien species, Tim Blackburn 86
What can we learn about invasion ecology from ant invasions of islands?, Lori Lach 87

Biogeography 87
Why theory in island biogeography needs to integrate within-island heterogeneity and non-neutral species, Manuel Steinbauer ... 89
An extended framework for the general dynamic theory of biogeography, Mark Carey [et al.] .. 90
Effects of current and historical geography on island biodiversity revealed by an agent-based computer simulation, Madli Joks [et al.] .. 91
The small island effect: an appraisal of mechanisms, Tom Matthews [et al.] 92
Isolation by elevation promotes speciation on islands globally, Richard Field [et al.] 93
The role of habitat heterogeneity in the taxonomic and functional diversity of Macaronesian spider communities, Paulo A. V. Borges [et al.] 94
A roadmap for island bryophyte biogeography and evolution, Jairo Patiño 96

Community / Functional Ecology 96
Niches and neutrality on a tropical oceanic island: explaining diversity and turnover in moth assemblages in island rainforests, Roger Kitching [et al.] 98
Diversity and community composition of herbivorous thrips vary along environmental gradients, but plant effects remain an important driver, Niry T. Dianzinga [et al.] 99
A trait-based approach to assess functional responses of epiphytic liverworts to environmental gradients, Lovanomenjanahary Marline [et al.] ... 100
Ecosystem services associated with water: the role of the liverwort Frullania tamarisci along an elevation gradient in Terceira Island (Azores) for one year, Rosalina Gabriel [et al.] .. 101
Functional diversity of the flora of the Canary Islands, Dagmar Hanz [et al.] 102
The importance of accounting for imperfect detection when estimating functional and phylogenetic structure of bird communities on land-bridge islands, Xingfeng Si [et al.] .. 103
Landscape structure influences niche-based and neutral mechanisms of community assembly in a fragmented insular dry forest, Grégoire Blanchard [et al.] 104
Resilience of tropical forests to cyclones: an individual-based model simulation approach, E-Ping Rau [et al.] .. 106

Conservation 106
Who really benefits from the worsening human-wildlife conflict and mass-culling of an endangered island flying fox on Mauritius?, Vincent Florens [et al.] 108
Ten years of monitoring and conservation of an endemic island parrot, Monica Griffith [et al.] .. 109

Five phases of long-term invasive species management: Lessons from the Amami mongoose eradication project, Yuya Watari .. 110

The value of the long-term Seychelles White-eye Recovery programme and challenges faced by the species, Elvina Henriette [et al.] .. 111

Population dynamics of an endangered endemic seabird of Réunion Island, the Barau’s Petrel (Pterodroma baraui): implications for conservation, Emilienne Grzegorczyk [et al.] ... 112

Metabarcoding analysis of endemic lizards’ diet for guiding reserve management in the Macaronesian islands, Catarina Jesus Pinho [et al.] .. 113

Endemic plant species are more palatable to introduced herbivores than non-endemics, Severin Irl [et al.] .. 114

Great genetic diversity but high selfing rates and short-distance gene flow characterize populations of a tree (Foetidia; Lecythidaceae) in the fragmented tropical dry forest of the Mascarene islands, Nicolas CuÉnin [et al.] .. 115

Evolution on Islands 115

Endemism within island ecosystems - Functional drivers of speciation, Carl Beierkuhnlein .. 117

Diversification analysis of a songbird lineage within a remote archipelago suggests a role for intra-island speciation, Maéva Gabrielli [et al.] .. 118

Human-driven extinctions have erased the evolutionary history of flightlessness in island birds, Ferran Sayol [et al.] .. 119

Multiple colonizations and parallel radiations of Peperomia (Piperaceae) on the Hawaiian Islands suggest context-dependent role of niche preemption in diversification on oceanic islands, Junying Lim [et al.] .. 120

Towards a comprehensive understanding of Oxera’s island life, Gildas Gâteblé [et al.] .. 121

Unraveling the stages of ant diversification in Madagascar, Evan Economo [et al.] .. 122

Unraveling the history of Apis mellifera in the islands of the South-West Indian Ocean: what we have learned from genetic, genomic, morphometric and ecological approaches, Johanna Clémencet [et al.] .. 123

Evolution of dengue viruses on islands, Shannon Bennett .. 124

Social Sciences on Islands 124

Global law as an analysing tool of climate change adaptation: what relevance for justice assessment of coastal governance?, Anne-Sophie Tabau [et al.] .. 126

Addressing the research-management implementation gap at two UNESCO sites in the Seychelles, Frauke Fleischer-Dogley [et al.] .. 127

An approach to assess the socio-economic impact of conservation projects, Jose Benedicto [et al.] .. 128

Breaking the "Poor data poor decision" loop. Strategies to balance geographic data-knowledge biases in marine spatial planning, Ateret Shabtay [et al.] .. 129

Legitimacy of the scientific expertise and its media coverage in an island context: analysis of media corpus on the theme of shark risk in La Réunion, Barbara Losen [et al.] .. 130

SEGA One Health: planning for the future of effective integrated health surveillance in the Indian Ocean, Said Anli Aboubacar [et al.] .. 131
Unpacking the controversies around the management and control of the invasive plant, Rubus alceifolius, in Réunion Island: preliminary elements for a sociological research, Cathleen Cybele .. 132

Sacred groves as habitat islands: biodiversity conservation through cultural practices, Alison Ormsby ... 133

Island palaeontology (Symp.)

Island life before Man, Alexandra Van Der Geer [et al.] 135

Pleistocene-Holocene environmental changes on Madagascar and associated extinctions, Steven Goodman ... 136

Quaternary extinction of large rainforest herbivores on Indonesia’s largest island, Sumatra, Julien Louys [et al.] ... 137

Early colonisation of the Philippine islands, Thomas Ingicco [et al.] 138

How long would it take to recover the number of bird species lost due to humans in New Zealand?, Luis Valente [et al.] ... 139

Island Biogeography, macroecology, evolution and conservation of marine organisms (Symp.)

Marine island biogeography: an overview of patterns and mechanisms involved in endemism and community assembly, Sergio Floeter 141

Evolution and biogeography of marine organisms on seamounts and oceanic islands, Hudson Pinheiro [et al.] ... 142

Reef fish endemism and functional diversity in oceanic islands, Juan Pablo Quimbayo .. 143

The rise of politics-based marine conservation in oceanic islands, Luiz Rocha 144

Marine lakes: A view of what is possible in marine islands, Michael Dawson 145

Fish as indicators of biodiversity change in coral reefs of the Indian Ocean, Melita Samoilys [et al.] ... 146

Temporal patterns of reef fish communities in South Atlantic oceanic islands, Carlos Eduardo Ferreira ... 147

Future steps to fight against invasive species on islands (Symp.)

The new IUCN Guidelines for invasive species planning and management on islands, Alan Tye [et al.] ... 149

Island Biodiversity in the Anthropocene, James Russell [et al.] 150

Predicting and preventing the arrival of invasive non-native species on islands globally, Helen Roy [et al.] ... 151

The ”French Connection”: lessons learned from the management of invasive plants in French Overseas Tropical Island Territories, Jean-Yves Meyer [et al.] 152

Past, present and future of invasive alien species on the Macaronesian islands, Marta Lopez-Darias [et al.] ... 154

Island rewilding with giant tortoises: state of the art and future directions (Symp.)

Wild and rewilded: Giant Aldabra tortoises in the Western Indian Ocean, Dennis M. Hansen ... 156
Thursday, July 11th 2019

Plenary Sessions

Orchids, moths, and birds on Madagascar, Mauritius, and Reunion: island systems with well-constrained timeframes for species interactions and trait change, Susanne Renner . 163

Ecology of rain forests on a large tropical island: lessons from New Guinea, Vojtech Novotny . 164

Atmosphere - biosphere - geosphere interactions

Will climate change shift tropical montane cloud forests upwards on islands?, Robin Pouteau [et al.] . 166

The challenges of measuring cloud liquid water content and cloud water interception in tropical montane cloud forests, Thomas Giambelluca [et al.] . 167

Cloud water interception and resilience of tropical montane bryophytes to climate change in cloud forests of La Réunion, Claudine Ah-Peng [et al.] . 168

Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forests-gases-aerosols-clouds system in the tropical island of La Réunion, Valentin Duflot [et al.] . 169

Climate change in the southwest Indian ocean: observations and projections, Marie-Dominique Leroux [et al.] . 171

Satellite based oceanic monitoring around Reunion Island for the years 2003 to 2017, Alexandre Wiefels [et al.] . 172

Biological Invasions on Islands

New insights on the origin and dispersion history of invasive populations of the small Indian mongoose, Urva auropunctata, in the Caribbean islands, Vivien Louppe [et al.] . 174

Invasive predator ecology and impacts in a biodiversity hotspot. The feral cat Felis catus in the New-Caledonian archipelago, Pauline Palmas [et al.] . 175

Is reproductive ecology behind the success of an invasive snake on a Mediterranean island?, Elba Montes [et al.] . 176

Twenty years of the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria island, Ramón Gallo-Barneto [et al.] . 177

Invasion dynamics of an amphibian with frequent human-mediated translocations on the Andaman archipelago, Nitya Prakash Mohanty [et al.] . 179

Global distributions of three highly invasive bird species under climate change, Martin Thibault [et al.] . 180
Varroa destructor invasion in the South West Indian Ocean islands and its mortality impacts on the endemic honeybee subspecies Apis mellifera unicolor in Madagascar, Mauritius and La Réunion, Olivier Esnault [et al.] .. 181

Towards island-specific scenarios of biological invasions in the 21st century, Bernd Lenzner [et al.] .. 182

Conservation

Are humans decreasing species diversity or only phylogenetic diversity in mammals on islands?, Søren Faurby [et al.] .. 184

Systematic conservation planning in New Caledonia: supporting sustainable land-use policies with reserve selection models, Dimitri Justeau-Allaire [et al.] 185

A science and conservation success story: insights from 30 years of research on Seychelles warblers, Martijn Hammers [et al.] .. 186

Biodiversity conservation needs on European overseas islands: lessons from Macaronesia, Jose Azevedo [et al.] .. 187

Evidences of global warming on island coastal biota: lessons from the Azores, Ana Isabel Neto [et al.] .. 188

A model-based evaluation of reefs connectivity and habitat degradation scenarios - Implications for future marine spatial planning and marine conservation policies in the Western Indian Ocean, Estelle Crochelet [et al.] .. 189

Individual variation in invasive island predators: consequences and management implications, Thomas Bodey [et al.] 190

Impacts of climate change on invasive plants in small islands: the case of Azores, Maria Teresa Ferreira [et al.] .. 191

Marine Ecology

Monitoring one of the world’s largest breeding populations of frigatebirds, Lorraine Cook [et al.] .. 193

Population decline in key oceanic seabird colony of the Eastern Indian Ocean: Could illegal egg harvesting be the prime cause?, Ravichandra Mondreti [et al.] 194

Tracking tropical seabirds at sea: intra- and interspecific differences in the foraging ecology of white-tailed and red-tailed tropicbirds on Indian Ocean islands, Annette Fayet [et al.] .. 195

Unravelling the relative importance of top-down and bottom-up environmental effects driving vital rates according to sex, colony and experience in long lived species, the snow petrel, Christophe Sauser .. 196

Exploring what movements matter in a critical eco-epidemiological situation, the case of avian cholera in seabirds of Amsterdam island, Jérémy Tornos [et al.] 197

Genetic diversity and colony isolation in one of the world’s most endangered seabirds, the Mascarene petrel (Pseudobulweria aterrima), endemic to Reunion Island (Indian Ocean), Jade Lopez [et al.] .. 198

Connectivity within an oceanic seamount system: comparative phylogeography of widely-distributed benthic invertebrates from the Indo-West Pacific, Magalie Castelin [et al.] 199

Restoration Ecology / Ecological Restoration

Moving toward data-driven ecological restoration of vegetation in the Hawaiian islands, Jonathan Price [et al.] .. 201
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasion impacts and medium-term benefits of controlling invasive</td>
<td>202</td>
</tr>
<tr>
<td>alien plants in one of the most invaded island forests worldwide,</td>
<td></td>
</tr>
<tr>
<td>Claudia Baider [et al.]</td>
<td></td>
</tr>
<tr>
<td>Ecological processes shaping community dynamics in seasonally dry</td>
<td>203</td>
</tr>
<tr>
<td>tropical forests: lessons learned from a restoration program on</td>
<td></td>
</tr>
<tr>
<td>Réunion island, Nicolas Cuénin [et al.]</td>
<td></td>
</tr>
<tr>
<td>Rewinding for rewilding: Suppressing the brown tree snake to</td>
<td>204</td>
</tr>
<tr>
<td>reintroduce the endangered Guam kingfisher, Christy Leppanen [et al.]</td>
<td></td>
</tr>
<tr>
<td>World’s first successful national eradication of ring-necked</td>
<td>205</td>
</tr>
<tr>
<td>parakeets Psittacula krameri, Jennifer Appoo [et al.]</td>
<td></td>
</tr>
<tr>
<td>Coral reef regeneration experiment with mineral accretion technology:</td>
<td>206</td>
</tr>
<tr>
<td>a case study on Fregate Island, Seychelles, Richard Baxter [et al.]</td>
<td></td>
</tr>
<tr>
<td>Restoring degraded water catchments using ecosystem-based adaptation</td>
<td>207</td>
</tr>
<tr>
<td>tools for long-term benefits of downstream communities in Seychelles,</td>
<td></td>
</tr>
<tr>
<td>Vicky Stravens [et al.]</td>
<td></td>
</tr>
<tr>
<td>Strategic rewilding to restore seed dispersal to a defaunated island,</td>
<td>208</td>
</tr>
<tr>
<td>Haldre Rogers [et al.]</td>
<td></td>
</tr>
</tbody>
</table>

Species Interactions / Networks / Trophic Ecology
208

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The feeding competition between the Mauritian flying fox Pteropus</td>
<td>210</td>
</tr>
<tr>
<td>niger and the invasive crab-eating macaque Macaca fascicularis,</td>
<td></td>
</tr>
<tr>
<td>Raphael Reinegger</td>
<td></td>
</tr>
<tr>
<td>Depauperate seed rain but effective recruitment after reinstated</td>
<td>211</td>
</tr>
<tr>
<td>dispersal evidence strong impacts of frugivore extinctions on native</td>
<td></td>
</tr>
<tr>
<td>forest regeneration after natural disturbance, Sébastien Albert [et</td>
<td></td>
</tr>
<tr>
<td>al.]</td>
<td></td>
</tr>
<tr>
<td>Seed dispersal by chelonians and the virtually intact Aldabra seed</td>
<td>212</td>
</tr>
<tr>
<td>dispersal network, Wilfredo Falcón [et al.]</td>
<td></td>
</tr>
<tr>
<td>Alien ant-disrupted pollination mutualism of a declining island</td>
<td>213</td>
</tr>
<tr>
<td>endemic plant varies temporally and is worsened by alien plant</td>
<td></td>
</tr>
<tr>
<td>invasion, Prishnee Bissessur [et al.]</td>
<td></td>
</tr>
<tr>
<td>Effects of exotic pollinators on network structure and ecosystem</td>
<td>214</td>
</tr>
<tr>
<td>function, Arturo Lonighi</td>
<td></td>
</tr>
<tr>
<td>Community-wide difference in floral traits between continental and</td>
<td>215</td>
</tr>
<tr>
<td>oceanic island coastal plants, Atushi Ushimaru [et al.]</td>
<td></td>
</tr>
<tr>
<td>Speciation of the sect. Camellia based on pollinator shift in</td>
<td>216</td>
</tr>
<tr>
<td>Japanese islands, Harue Abe [et al.]</td>
<td></td>
</tr>
</tbody>
</table>

Plant-animal interactions as drivers of biodiversity conservation on islands (Symp.)
216

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A global review of frugivory and seed dispersal on islands, Manuel</td>
<td>218</td>
</tr>
<tr>
<td>Nogales [et al.]</td>
<td></td>
</tr>
<tr>
<td>Double mutualisms: a global island phenomenon, Anna Traveset</td>
<td>220</td>
</tr>
<tr>
<td>The forgotten fauna: native seed predators on islands, Jo Carpenter</td>
<td>221</td>
</tr>
<tr>
<td>[et al.]</td>
<td></td>
</tr>
<tr>
<td>Threatened plant seeks pollinator (or when conservation practices</td>
<td>222</td>
</tr>
<tr>
<td>prevent mutualistic interactions), Aarón González-Castro [et al.]</td>
<td></td>
</tr>
<tr>
<td>The role of morphological traits in mutualistic interactions among</td>
<td>223</td>
</tr>
<tr>
<td>plants and vertebrates in the Galápagos, Sandra Hervías-Parejo [et</td>
<td></td>
</tr>
<tr>
<td>al.]</td>
<td></td>
</tr>
<tr>
<td>A Fijian rainforest tree requires bats to open its flowers - the</td>
<td>224</td>
</tr>
<tr>
<td>strange evolutionary case of chiropteropisteusis, a new pollination</td>
<td></td>
</tr>
<tr>
<td>system, Sophie ”topa” Petit [et al.]</td>
<td></td>
</tr>
</tbody>
</table>

Functional island biogeography - concepts and prospects (Symp.)
224

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional island biogeography: the next frontier in island biology,</td>
<td>226</td>
</tr>
<tr>
<td>Holger Kreft</td>
<td></td>
</tr>
<tr>
<td>A global review of insular woodiness and its potential functional</td>
<td>227</td>
</tr>
<tr>
<td>significance, Alexander Zizka [et al.]</td>
<td></td>
</tr>
</tbody>
</table>
Drivers of woody alien invasions across spatial scales in the Hawaiian Islands, Dylan
Craven [et al.] ... 228
Predicting the functional trait composition of insular communities: an application to
tropical reef fishes, Claire Jacquet [et al.] .. 229
Extinction-Driven Changes in Insular Frugivore Communities: Worldwide and in Mao-
ritius, Julia Heinen [et al.] .. 230

New insights into the assembly of island biota, filtering effects and disharmony
(Symp.) .. 230

Disharmony of the world’s island floras, Christian König [et al.] 232
Drivers of orchid diversity, endemism and disharmony on islands, Amanda Taylor [et al.]
.. 233
Using islands to understand the dynamics of ecological networks: 1st lessons from
Hawaii, Natalie Graham [et al.] ... 234
Functional traits and life history dimensions explain filtering in island communities, Ju-
lian Schrader [et al.] .. 235
The influence of native species composition on the invasibility of island floras across
spatial scales, Patrick Weigelt [et al.] ... 236

Island reptiles: the rich diversity of continental and oceanic islands (Symp.) 237

Biogeography of Gulf of Guinea Oceanic Island Reptiles, Luis Ceríaco 239
Biodiversity growth on the volcanic ocean islands and the roles of in situ cladogenesis
and immigration: case with the reptiles, Jason Ali [et al.] .. 240
Ecological and evolutionary determinism in Greater Antillean reptiles, Graham Reynolds [et
al.] .. 241
The evolution of an island phenotype: results from an experimental introduction, An-
thony Herrel [et al.] ... 242
Lizard discoveries and rediscoveries in the New Caledonian region, Aaron Bauer [et al.] 243

Biogeography .. 243

Distribution and relative age of endemism across islands worldwide, Simon Veron [et al.]
... 245
The Pacific basin as a laboratory to study islands disharmony, Anne-Christine Monnet [et
al.] .. 246
Do endemic trees flora make endemic forests? Insights from New Caledonian forests, Philippe
Birnbaum [et al.] .. 247
Understanding patterns of micro-endemism in chameleons: case of Furcifer nicosiai (Rep-
tilia, Chamaeleonidae) in the western dry forest of Madagascar, Miary Raselimanana 248
Out of the blue – the phylogeographic tale of freshwater amphipods (Malacostraca) from
the Mediterranean Islands, Kamil Hupalo [et al.] ... 249
Changes in biota following volcanic eruption on Nishinoshima island among the Oga-
sawara islands in subtropical Japan, Kazuto Kawakami .. 250
Islands in the ice: patterns in and threats to the unique terrestrial biodiversity of the
Antarctic, Peter Convey ... 251
Distribution of genetic diversity of the subantarctic crab Halicarcinus planatus: first
marine alien reaching Antarctica, Karin Gérard [et al.] .. 252

Ecology on Islands ... 252
What is biodiversity? How to better observe it and understand it in the 21st century?, Bruno Senterre [et al.] .. 254
Decreasing dominance of the endemic tree Uapaca bojeri drives the spread of Pinus in the sclerophyll Tapia forest, Madagascar, Manoa Herimino Rajaonarivelo [et al.] 255
Lone fighters or team players? How co-occurrence patterns shape the patchy vegetation in arid volcanic environments, Pia Eibes [et al.] .. 256
Grassland habitat islands in urban areas: testing ecological theories, Béla Tóthmérész [et al.] ... 257
Diversity of grassland habitat islands: habitat and landscape filters of plant establish-
ment in agricultural landscapes, Balázs Deák [et al.] ... 258

Evolution on Islands
The eco-evolutionary feedbacks of why island forms so often differ from their mainland counterparts, Tim Coulson [et al.] .. 260
Island versus mainland evolution of a ‘great speciator’: contrasting patterns of morpho-
logical diversification in the white-eye radiation, Julia Day 261
A meta-analysis of mainland and island populations suggests a general isolation syndrome affecting traits, demography, and genetic diversity, Anna M Csergő [et al.] 262
Plant mating systems on islands, Pierre-Olivier Cheptou 263
The biogeography of insular size evolution: the effects of isolation, island area and age on size changes in island plants, Matt Biddick .. 264
Evolutionary convergence in the flora of New Caledonia: correlated evolution and envi-
ronmental contingencies of monocauly, David Bruy [et al.] 265
Understanding biodiversity dynamics by applying eco-evolutionary simulation models to insular systems, Juliano Sarmento Cabral [et al.] .. 267

Palaeo-biology / Palaeo-environments
Living on the edge: the effects of long-term climate change and fire activity on the remnant cool temperate rainforests of Tasmania (Australia), Michela Mariani [et al.] 269
Archipelagos in the Anthropocene - the legacies of past human-environment interactions on islands, Sietze Norder [et al.] ... 270
A new record of human settlement and past environmental change of the Comoros, Simon Haberle [et al.] ... 272
When were the Azorean Islands really colonized? A high-resolution paleolimnological approach, Pedro M. Raposeiro [et al.] ... 273
Biodiversity dynamics after human arrival on islands: are islands at an ecological cross-
road?, Sandra Nogué [et al.] .. 275
Tracking human impact on island ecosystems by detecting "ghost taxa" with ancient DNA, Lea De Nascimento [et al.] ... 276
Archaeobiogeography of extinct rice rats (Oryzomyini) in the Lesser Antilles during the Ceramic Age (500 BC to 1500 AD), Marine Durocher [et al.] 278
Cylindraspis - from whence thou hast com’st to thine home? Mitogenomes give the answer, Uwe Fritz [et al.] .. 280
Trait dependent diversification on islands (Symp.)

A global review of insular woodiness and its impact on diversification, Frederic Lens [et al.] ... 283
The dark side of the island rule or how traits acquired on islands make endemic species more vulnerable to extinction, José María Fernández-Palacios 284
Detecting trait-dependent diversification, Leonel Herrera-Alsina [et al.] 285
Frugivory-related traits promote island radiations of tropical palms, Renske E. Onstein [et al.] .. 286
The role of traits in non-adaptive diversification: some insights from a continental archipelago., Anna Papadopoulou [et al.] ... 287

Dispersal ecology meets island evolution (Symp.)
You move, I change: model-based approaches reveal striking differences between the evolution of plants and animals in the Canary Islands, Isabel Sanmartín [et al.] 289
Dispersal, niche and topoclimatic variation: speciation consequences for island invertebrates, Brent C. Emerson [et al.] ... 290
Defining geographical island isolation for terrestrial mammalian dispersal, Zachary Carter [et al.] ... 291
Tridactyle (Orchidaceae): a story of speciation and colonisation in São Tomé and Príncipe., Tania D’Haijère [et al.] ... 292
Combining species distribution models with dispersal kernels to predict range shifts in wind-dispersed organisms under changing climate conditions, Florian Zanatta [et al.] . 293

Seabirds on Islands (Symp.)
Seabird on islands: general overview and a case study, Matthieu Le Corre [et al.] 295
Consequences of multi-species introductions on island ecosystems, James Russell [et al.] 296
Seabirds on islands: unravelling drivers of spatial distribution for breeding seabird populations on New-Caledonia islets, Tristan Berr [et al.] 297
Seabird recovery following rat and cat eradication in Seychelles: achievements and challenges., Gerard Rocamora .. 299
Initial seabird response to an on-going rat eradication project on Lehua islet, Hawaii (USA), Andre Raine [et al.] ... 300

Author Index

302
Plenary Sessions

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to natural history of the Mascarene islands, Dominique Strasberg</td>
<td>15</td>
</tr>
<tr>
<td>The history, current status, and future of the protected areas of Madagascar, Steven M. Goodman</td>
<td>16</td>
</tr>
</tbody>
</table>
Introduction to natural history of the Mascarene islands

Dominique Strasberg *† ¹

¹ Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBM) – Université de la Réunion : UMRC53 – Université de La Réunion 15 avenue René Cassin CS92003 97744 Saint-Denis Cédex 9, France

Situated in the South West Indian Ocean, Mauritius, Rodrigues and Reunion are the main islands of the Mascarene archipelago. The Mascarene islands are often cited in textbooks as the home of the Dodo and as a place where human activities have resulted in mass extinctions and ecological disasters. Nevertheless, the archipelago still retains twenty-percent of its original habitats. The Mascarene biota is extremely diverse and most taxa have a high degree of endemism. Recent research studies in the Mascarenes allow a better understanding of the processes underlying evolutionary history and ecological patterns. Physical settings and biogeographical features make the archipelago similar to the Hawaiian Islands. A comparative analysis of the Mascarene biota with their analog on ”Darwinian” islands is a promising avenue for detecting general rules and patterns and for exploring new and emergent questions in island biology.

Keywords: biodiversity, hotspot, remote archipelago, natural laboratory, endemicity

*Speaker
†Corresponding author: dominique.strasberg@univ-reunion.fr
The island of Madagascar is infamous for its exceptional biota with high levels of endemism at different taxonomic levels. Based on its separation from other landmasses in deep geological time, associated vicariance, and a nearly continuous history of subsequent colonization events, the fauna and flora of the island has few parallels in the world. Madagascar has a remarkable diversity of unique organisms, many micro-endemics, and a complexity of adaptive radiations. These aspects have been the themes of research for several decades and the importance of these biological splendors continue to be documented with continuous new discoveries, as well as this information being incorporated into on-going conservation programs. One of the critical aspects is that the vast majority of the terrestrial biota is forest dwelling. On the basis of a shifting sequence of factors ranging from traditional practices associated with slash-and-burn agriculture and creation and maintenance of cattle pasture, and the recent increase in commercial logging, the natural vegetation of the island has been greatly reduced. Further, different aspects of commercial exploitation of the country’s mineral wealth are on the increase. Estimates indicate that less than 8-9% of the original forest cover remains and, most critically, the current terrestrial protected area system contains a large percentage of the enduring native forests. In 1989, Martin Nicoll and Olivier Langrand published a review of Madagascar’s protected areas, and from a local or international perspective, this was a monumental advancement. Subsequently, several important aspects have changed for the positive, including a dramatic increase in the number of conservation sites, numerous conservation organizations working together to protect the remaining natural areas, enormous efforts to study and document the biota of the island, generations of national field biologists emerging, new perspectives on the evolutionary history, systematics, and ecology of a multitude of organisms, and something approaching an exponential growth in available information. On the negative side, particularly overlaid on population growth and economic problems, rates of deforestation have not notably decreased, fire remains an important problem, and different forms of natural resource exploitation are on the increase. In any case, all of these aspects provide the need to revisit the synthesis of Nicoll and Langrand. In this presentation, which is based on a recent large-scale review of 98 terrestrial protected areas of Madagascar, different historical aspects associated with the advancement of conservation on the island, and the status of the protected area system are given. The results of recent analyses within these protected areas associated with forest loss, problems with fire, and different forms of exploitation (removal of hardwoods, bush meat, etc.) are discussed. Contrasts are made between the pressures on different forest types and local cultural traditions. The final portion of the lecture addresses measurable advances in the protected area system, what we now know about the diversity of the islands vertebrates, and coherent plans for prioritization of continued biological exploration of the island.

Keywords: natural protected areas, biodiversity hotspot, ressources, exploration, conservation

*Speaker
†Corresponding author: sgoodman@fieldmuseum.org
Biogeography

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional disharmony of the flora of New Caledonia: filtering effect of ultramafic soils and metal accumulation syndrome, Sandrine Isnard [et al.]</td>
<td>18</td>
</tr>
<tr>
<td>A functional biogeography approach to insular bird communities with mixed-origin species, Jean-Yves Barnagaud [et al.]</td>
<td>20</td>
</tr>
<tr>
<td>Dispersal modality determines the relative partitioning of beta diversity in spiders on a subtropical land-bridge archipelago, Lingbing Wu</td>
<td>21</td>
</tr>
<tr>
<td>Phylogeography of coronavirus in bats in the Western Indian Ocean, Léa Joffrin [et al.]</td>
<td>22</td>
</tr>
<tr>
<td>The forgotten hotspot: a decade of research into the herpetofauna of the Comoros Archipelago, Oliver Hawlitschek</td>
<td>23</td>
</tr>
<tr>
<td>The role of ecological specialization in patterns of insular communities, Spyros Sfenthourakis [et al.]</td>
<td>24</td>
</tr>
<tr>
<td>Systems, landscapes and vegetation of the Iles Eparses (South-West Indian Ocean): geobotanical survey of Europa island, Vincent Boulet [et al.]</td>
<td>25</td>
</tr>
</tbody>
</table>
Functional disharmony of the flora of New Caledonia: filtering effect of ultramafic soils and metal accumulation syndrome

Sandrine Isnard 1,2, Vidiro Gei 3, Yohan Pillon 4, Peter Erskine 3, Guillaume Echevarria 3,5, Bruno Fogliani 6, Tanguy Jaffré 1,2, Antony Van Der Ent 3

1 Botanique et Modélisation de l’Architecture des Plantes et des Végétations (UMR AMAP) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR51-2015, Institut national de la recherche agronomique [Montpellier] : UMR931, Université de Montpellier : UMR5120, Centre National de la Recherche Scientifique : UMR5120, Institut de Recherche pour le Développement : UMR123 – Bd de la Lironde TA A-51/ PS 2 34398 Montpellier cedex 5, France
2 Herbarium of New Caledonia (NOU) – Centre IRD de Nouméa B.P. A5 98848 Nouméa, New Caledonia
3 Centre for Mined Land Rehabilitation Sustainable Minerals Institute (SMI-CMLR) – The University of Queensland Brisbane Qld 4072, Australia
4 Laboratoire des symbioses tropicales et méditerranéennes (LSTM) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR82-2011, Université Montpellier 1, Institut National de la Recherche Agronomique, Université Montpellier 2 – Sciences et Techniques, Université de Montpellier, Institut national d’études supérieures agronomiques de Montpellier – TA A82/J - Campus international de Baillarguet 34398 Montpellier Cedex 5, France, France
5 Laboratoire Sols et Environnement (LSE) – Université de Lorraine, Institut national de la recherche agronomique (INRA) : UMR1120 – 2 Avenue de la Forêt de Haye TSA 40602 54518 Vandoeuvre-les-Nancy Cedex, France
6 Institut Agronomique néo-Calédonien (IAC) – BP 73 Port Laguerre, 98890 Païta, New Caledonia

New Caledonia, an archipelago in the Southwest Pacific, is renowned as one of the world’s most significant biodiversity hotspot. The archipelago is also recognized as a hotspot for plants growing on metal-rich soils, as more than 70% of the endemic flora and 63% of species occur on ultramafic (i.e. metal-rich and nutrient deficient) soils. The chemical and physical adversity of ultramafic soils have driven some plants into spectacular transformations, including the evolution of trace element hyperaccumulation. The syndrome is known from many species in New Caledonia, although a systematic assessment is currently lacking. To gain insight into the full diversity of hyperaccumulation we determined metal concentrations (nickel and manganese) of the entire ultramafic flora using X-ray Fluorescence Spectroscopy (XRF) in herbarium specimens (NOU). This assessment comprises of a total of ≈11 200 specimens in 35 orders, 96 families, 281 genera, 1484 species covering 88.5% of the ultramafic flora. The mass screening resulted in the recording of 92 Ni and 70 Mn hyperaccumulator taxa, belonging to 12 and 22 families respectively; confirming that New Caledonia is a hotspot for these globally rare plants. Hyperaccumulator plants are phylogenetically clustered in a few major clades, especially the Oxalidales and Malpighiales, followed by the Proteales, Gentianales and Ericales. At lower taxonomic ranks, there is a strongly unbalanced distribution of hyperaccumulators in few major families (e.g. Phyllanthaceae, Cunoniaceae), and even few genera (e.g. Phyllanthus). The disharmony of the New Caledonian flora has been ascribed to the over-representation of groups associated with ultramafic soils, which might have been accentuated by the evolution of metal accumulation syndrome in a few distinct lineages. The results of this study suggest that ecological filtering and physiological prerequisites to metal-enriched soils have been of major importance in the phylogenetic assemblage of the flora. Several distinctive biogeographical factors of New Caledonia (i.e. the extend and old age of ultramafic soils, the isolation of ultramafic massifs) might have further promoted diversification and

*Speaker
†Corresponding author: sandrine.isnard@ird.fr
endemism of (pre-)adapted lineages. Current lines of research aim to explore the adaptive benefit of hyperaccumulation, in particular elemental allelopathy and plant-insect interactions in selected model groups.

Keywords: disharmony, ecological filtering, hyperaccumulation, phylogenetic clustering, ultramafic substrate.
A functional biogeography approach to insular bird communities with mixed-origin species

Jean-Yves Barnagaud *†, Luc Barbaro 2, Raphaël Mossier 1, Marc Deconchat 2, Eckehard Brockerhoff 3

1 Centre d’Écologie Fonctionnelle et Evolutive (CEFE) – CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293 Montpellier, France – 919 route de Mende, France
2 Dynafor, INPT, EI Purpan, INRA, Univ. Toulouse – Institut national de la recherche agronomique (INRA) – Auzeville, France
3 Scion (New Zealand Forest Research Institute) – PO Box 29237, Christchurch 8440, New Zealand., New Zealand

Species introductions on islands result into heterogeneous assemblages with short common biogeographic histories, yet potentially redundant ecological functions. How native and feral species interact over resource and habitat in the absence of long co-evolutionary histories presides to the deterministic part of assembly processes in these assemblages, in turn affecting strategies to preserve indigenous biodiversity. Critical to this question are the ability of introduced species to cope with novel environments and their degree of niche separation with native species, which may or not permit local invasion. These processes can be investigated by studying shifts in alien species’ ecological trait space between their native and introduction ranges, and its degree of overlap with co-occurring native species on introduction grounds, accounting for the depth of their common phylogenetic histories. Previous results suggested that insular assemblages are driven either by past competitive exclusion, habitat filtering or niche displacement associated with post-introduction lability in species’ trait space. We attempt to disentangle these processes in New Zealand bird assemblages, which uniquely mix species from multiple biogeographical origin and range from narrow endemism to colonizing alien birds. New Zealand thus hosts some of the world’s most peculiar bird assemblages, albeit without obvious conflicts among species with differing local histories. We use a multispecies hierarchical bayesian model fitted on 501 point counts to investigate niche separation between 21 alien and native species through their responses in abundance to habitat composition at landscape (proportion of native and man-modified habitats) and local scales (forest composition and vertical structure). Complementarily, we investigate the roles of species’ ecological trait space and biogeographical origins in these responses through an ordination framework constructed with literature data. Our results support habitat filtering operating simultaneously at multiple scales, associated with trait-based separation between native and alien species. We further present preliminary results on the contributions of biogeographic origin and phylogenetic relatedness to habitat-trait associations in New Zealand bird assemblages, and eventually propose avenues to refine these results through novel curve analysis methods. Our framework aims to integrates functional and biogeographic perspectives on novel insular communities to the benefit of a better understanding and conservation of island biodiversity.

Keywords: alien species, birds, ecological trait space, functional biogeography, New Zealand

*Speaker
†Corresponding author: jean-yves.barnagaud@cefe.cnrs.fr
Dispersal modality determines the relative partitioning of beta diversity in spiders on a subtropical land-bridge archipelago

Lingbing Wu *

1 Hubei University – 368 Youyi Ave, Wuchang District, Wuhan, China, China

Species diversity on islands is the result of colonization, extinction and speciation. Beyond the classical approach of alpha diversity, beta diversity partitioning provided fresh insights into the assembly mechanisms that drive the extent of change in community composition on islands. To identify geographical drivers determining the relative partitioning of species replacement and richness difference or nestedness-resultant components of beta diversity in spider groups with differing dispersal modalities (frequent, occasional or non-ballooners). We sampled spider assemblages on 31 land-bridge islands for two years in the Thousand Island Lake, China. Two frameworks were used to separate beta diversity (β_{cc} or β_{jac}) of each group into either species replacement (β_{3}) and richness difference (β_{rich}) components, or turnover (β_{jtu}) and nestedness-resultant (β_{jne}) components. Mantel and partial Mantel tests were performed to determine correlations between pairwise dissimilarities and difference in island area, difference in distance to mainland and inter-island distance for each group. The multiple-island dissimilarity of spiders was primarily driven by turnover. Beta diversity (β_{cc} or β_{jac}) was positively associated with difference in island area in frequent ballooners, and negatively associated with difference in island area in occasional ballooners. Difference in island area had positive effects on β_{jne} for all groups, but negative effects on β_{3} and β_{jtu} for occasional or non-ballooners. β_{rich} was positively associated with difference in island area in frequent and non-ballooners. We did not find any significant isolation effects for these three measures of dissimilarity. The dominant process of extinction resulted in a high contribution of turnover to the multiple-island dissimilarity of spiders. Specifically, frequent ballooners contributed less turnover to multiple-island dissimilarity than occasional and non-ballooners. The most likely explanation for this is that frequent ballooners were potentially able to colonize all islands, whereas occasional and non-ballooners were constrained by water barriers and were unable to occupy most islands. Contrasting dissimilarities among dispersal groups of spiders demonstrates the importance of beta diversity partitioning, and the mechanistic insight gained on trait-dependence in community assembly.

Keywords: dissimilarity, beta diversity partitioning, spiders, ballooning, habitat fragmentation

*Speaker
Phylogeography of coronavirus in bats in the Western Indian Ocean

Léa Joffrin ∗1, Steven M. Goodman3,2, David A. Wilkinson1, Beza Ramasindrazana3,1, Erwan Lagadec1, Yann Gomard1, Gildas Le Minter1, Andréa Dos Santos4, M. Corrie Schoeman5, Rajendraprasad Sookhareea6, Pablo Tortosa1, M. Puttoo7, Simon Julienne8, Eduardo S. Gudo9, Patrick Mavingui1, Camille Lebarbenchon1

1 Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT) INSERM 1187, CNRS 9192, IRD 249 – Sainte-Clotilde, La Réunion, Réunion
3 Association Vahatra – Antananarivo, Madagascar
2 Field Museum of Natural History – Chicago, United States
4 Veterinary Faculty, Eduardo Mondlane University – Maputo, Mozambique
5 School of Life Sciences, University of Kwa-Zulu Nata – Kwa-Zulu Natal, South Africa
6 National Parks and Conservation Service – Réduit, Mauritius
7 Ministry of Agro-industry and Food Security – Port Louis, Mauritius
8 Seychelles Ministry of Health – Victoria, Mahe, Seychelles
9 Instituto Nacional de Saúde – Maputo, Mozambique

Bats are recognized as major reservoir hosts of emerging infectious agents. Coronavirus (CoV) have been reported in a large diversity of bat species, worldwide, and have been responsible of major outbreaks in humans, including the Severe Acute Respiratory Syndrome and the Middle-East Respiratory Syndrome. The South Western Indian Ocean (SWIO) region is an ecological system ideal for the study of the ecology and evolution of zoonotic viruses. This region is composed of continental islands separated from the African continent tens of millions years ago and oceanic islands that arose from the ocean between 1 to 15 million years ago, from volcanic activity. This complex geological history has shaped the colonization patterns of bats and their infectious agents. The goal of this study was to (i) estimate the prevalence of CoVs infection in bats in the western Indian ocean (Mozambique, Madagascar, Mayotte, Mauritius, Reunion Island, and the Seychelles), (ii) explore the genetic diversity of SWIO bat CoVs and (iii) identify potential association between bat families and CoVs genotypes. Based on 1114 sampled bats representing 40 species of 9 families (Emballonuridae, Hipposideridae, Miniopteridae, Molossidae, Nycteridae, Pteropodidae, Rhinolophidae, Rhinonycteridae, Vespertilionidae), we performed RNA extraction and RT-PCR on biological material (swabs and organs) followed by partial sequencing of the RNA-dependent RNA polymerase gene. A total of 88 bats (7.9 ± 1.6%) tested positive for CoV infection. A significant difference in the prevalence of positive samples was found between locations, bat families, and bat species. In particular, high prevalence of positive bats were found in Nycteridae (28.6% ± 23.6%) and Rhinolophidae (24.6% ± 10.5%), and in Mozambique (19.6% ± 4.7%), as compared to bats sampled on islands. Phylogenetic analyses provided evidence that CoV positive bats harboured a large diversity of α- and β- coronaviruses, some being closely related to previously described human CoV. Also, we observed an association between bat families and CoV genotypes suggesting a long co-evolutionnary process.

Keywords: bats, coronavirus, island biogeography, phylogeny, coevolution

∗Speaker
The forgotten hotspot: a decade of research into the herpetofauna of the Comoros Archipelago

Oliver Hawlitschek *

1 Zoologische Staatssammlung (SNSB-ZSM) – Muenchhausenstr. 21, 81247 Munich, Germany

The Comoros is an archipelago of four major oceanic islands in the Western Indian Ocean. Unlike Hawai‘i, the Canaries, the Galápagos, and most other oceanic archipelagoes, the fauna of the Comoros remains poorly studied despite its high diversity and endemism. Today, reptiles may be the best-studied animal group of the Comoros. Reviewing my work of the last decade, I highlight the various biogeographic connections of the archipelago and the different colonization mechanisms of the past. Most reptile clades colonized the Comoros from the Northern tip of Madagascar, where the fast-flowing North-East Madagascar Current acts as an overseas dispersal ‘conveyor’. The ancestors of other species of reptiles colonized the Comoros from central western Madagascar, continental Africa, or the Eastern Indian Ocean. In addition to common intra-archipelago dispersal and speciation, I present possible evidence of several extinction events followed by, or following, (re-)colonization by closely related lineages from Madagascar. In the *Ebenavia inunguis* species complex of geckos, the clade inhabiting the three western islands of the Comoros is sister to all other extant lineages. Its estimated age is substantially older than the extant islands of the archipelago (13–20 vs. ca. 11 million years). Furthermore, the two species of frogs from the Comoros are among the comparatively few unambiguous examples of amphibian species endemic to oceanic islands. Finally, I present recent advances in species conservation and the results of an atlas of the distribution of the reptiles and amphibians of the Comoros Archipelago.

Keywords: biogeography, overseas dispersal, taxonomy, reptiles, amphibians, atlas

Speaker
The role of ecological specialization in patterns of insular communities

Spyros Sfenthourakis ∗† 1, Konstantinos Proios 2, Kostas A. Triantis 2

1 University of Cyprus, Dept. of Biological Sciences (UCY) – Panepistimiou Ave. 1, 2109 Aglantzia, Nicosia, Cyprus
2 University of Athens, Faculty of Biology (UOA) – Panepistimiopolis 15703, Athens, Greece

The dominant models in island biogeography implicitly treat all species as ecologically equivalent, especially when addressing effects of area, environmental heterogeneity and/or other factors on species richness. Some authors have attempted to treat generalist and specialist species separately or to use such a distinction in explanations of phenomena like the Small Island Effect (SIE). Nevertheless, previous approaches have kept the respective characterization binary, classifying species in one or the other category. Species, though, occupy a different position within the generalist-specialist continuum and this diversity of ecological roles might have important consequences for patterns at the community and meta-community levels. In the present work, we explore the effects of area and environmental heterogeneity on a modified metric of species richness that incorporates the varying ecological specialization of different species. We used a data set with terrestrial isopods from Aegean islands (Greece), for which a detailed description of each species’ habitat exploitation range was available. We replaced the mere presence of each species in the presence/absence matrix with the number of habitat types it exploits in the study system and, for each island, we estimated an index of ‘ecorichness’, as the sum of these values for all its species, standardized with its total number of species (to control for variation in species richness among islands). Then, we explored the relation of this index with area, habitat diversity and the ‘Choros’ model. We tested significance of results using a null model approach, by drawing ‘ecorichness values’ from a randomized species pool with either the same distribution of ecorichness values with that of the observed matrix or a different distribution, such as normal or negative binomial. Our findings reveal radically different responses of small and large islands, documenting the increased role of specialists that is in agreement with previous hypotheses on the processes leading to the SIE and with the role of habitat diversity in the shaping of insular communities.

Keywords: species, area relationships, generalists, specialists continuum, habitat diversity, Choros model, island biogeography, Aegean archipelago

∗Speaker
†Corresponding author: sfendour@ucy.ac.cy
Systems, landscapes and vegetation of the Iles Eparses (South-West Indian Ocean): geobotanical survey of Europa island

Vincent Boullet 1†, Jean Hivert 2, Loïc Commagnac 3

1 Université de Bretagne Occidentale (UBO) – EA 7462 Géoarchitecture, Université de Bretagne Occidentale – 29200 Brest, France
2 Conservatoire botanique national de Mascarin (CBNM) – 97436 Saint-Leu, Réunion
3 Institut national de l’information géographique et forestière (IGN), Ecosystèmes forestiers – 33166 Saint-Médard-en-Jalles, Réunion

The Iles Eparses comprise four low altitude (4-14 m) coral islands with terrestrial habitats located in the South-West of the Indian Ocean, close to Madagascar: Europa, Juan de Nova and the Iles Glorieuses in the Mozambique channel, and Tromelin in the North of the Mascarene archipelago. Between 22° and 11° South, the Iles Eparses fall into a south/north climatic gradient spanning from a semi-arid climate (Europa) to a more humid climate for the most northern island (Glorieuses). They administratively belong to the 5th district of the French Southern and Antarctic Land, a French Oversea Territory, since 2007. In spite of their reduced terrestrial area (from 30 km2 for Europa to 1 km2 for Tromelin), these islands share an exceptional natural heritage including many marine and terrestrial endemic species. At a regional scale the Iles Eparses are some of the most pristine ecosystems, largely preserved from anthropogenic impacts due to their geographical isolation and a historically very limited human occupation. In parallel with an updated account of the vascular flora published in 2018, a multiscale analysis of vegetation and plant landscapes was conducted according to the methods of geobotany including dynamic-catenal phytosociology, bioclimatology, geomorphology, and edaphology. Bioclimates have been established thanks to the four meteorological stations located on each of the islands. More than 1000 phytosociological surveys, mostly associated with geomorphological and ecological toposéquences, were carried out from 2004 to 2019. For each island, several typologies have been established: vegetation, series and systems of vegetation. Using the the colorimetric analysis and image segmentation method developed by IGN in the french national habitat mapping program (CarHAB), a map of vegetation systems has been drawn up for each island. We present here the first geobotanical survey established for the island of Europa. This atoll south of the Mozambique Channel has suffered little human disturbance, these remaining sectorized to a small part of the island. For the rest, the island is an exceptional place for the study of catenal structure and vegetation dynamics in response to marine and terrestrial ecological gradients and natural cyclonic, marine and avifaunistic disturbances.

Keywords: coral islands, geobotany, vegetation, vegetation mapping

*Speaker
†Corresponding author: v.boullet43@orange.fr
Evolution on Islands

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic structure of two genera of Sumatran frogs trace back to ancient volcanic islands origins rather than paleodrainage systems, Umilaela Arifin [et al.]</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Factors of population divergence and past demographic history in an endemic tree (Coffea mauritiana) from Reunion Island, Edith Garot [et al.]</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Niches in time: Molecular gut content analysis reveals changing ecological relationships among Hawaiian Tetragnatha spiders along a chronosequence, Susan Kennedy [et al.]</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>The genomics of founder events in an island colonising bird, Sonya Clegg [et al.]</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Chloroplast haplotype analysis of Canary islands Micromeria indicate inter-island colonization as factor to explain genetic diversity patterns, Harald Meimberg [et al.]</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Adaptive consequences of introgression during the differentiation of Micromeria in the Canary islands, Manuel Curto [et al.]</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Evolution of reproductive barriers in sympatric Arctic charr morphs in Thingvallavatn (Iceland), Kalina Kapralova [et al.]</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
Genetic structure of two genera of Sumatran frogs trace back to ancient volcanic islands origins rather than paleodrainage systems

Umilaela Arifin *† 1, Utpal Smart 2,3, Martin Husemann 1, Stefan Hertwig 4,5, Eric Smith 2, Djoko Iskandar 6, Alexander Haas 1

1 Centrum für Naturkunde-Zoologisches Museum Hamburg, Universität Hamburg (CeNak-ZMH, UHH) – Martin-Luther-King-Platz 3 20146 Hamburg, Germany
2 Department of Biology and the Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington (ARDRC) – 337 Life Science Building, Arlington, Texas 76019, United States
3 Center for Human Identification, University of North Texas (CHI-UNT) – Health Science Center, Fort Worth, TX 76107, United States
4 Naturhistorisches Museum der Burgergemeinde Bern (NHMBE) – Bernstrasse 15 CH-3005 Bern, Switzerland
5 Institute of Ecology and Evolution, University of Bern – Baltzerstrasse 6, CH-3012 Bern, Switzerland
6 School of Life Sciences & Technology, Bandung Institute of Technology (SITH-ITB) – Jalan Ganeca 10 Tamansari, Bandung 40132, Indonesia

The influence of riverscapes on the distribution and genetic structure of species has been investigated in various taxa and regions. In most cases, the influence of river systems on genetic diversity depends on taxa specific life history traits as well as other geographic factors. Here, we assess the role of the paleodrainage systems of the Sunda region (with a focus on the island of Sumatra) in shaping the evolutionary history frogs’ genera (Huia and Sumaterana) that are highly dependent on cascading stream habitats during their larval stage. Our phylogenetic analyses demonstrated that paleodrainages had no congruency with the current distribution patterns of Huia and Sumaterana. Our time divergence analyses estimated these frogs to have colonized Sumatra much earlier than the occurrence of the known drainage systems in the Pleistocene. Interestingly, both genera are genetically structured into northern and southern lineages on the island of Sumatra, which may suggest that the genetic segregation observed today dates back to now connected Sumatran precursor volcanic islands. Our data further corroborate the current underestimation of biodiversity on Sumatra and show that frogs of the genus Huia in Sumatra and Java are more diverse than currently known.

Keywords: Amphibians, diversification, gastromyzophorous tadpoles, molecular phylogenetic, Pleistocene, Ranidae, Sundaland

*Speaker
†Corresponding author: umilaela@gmail.com
Factors of population divergence and past demographic history in an endemic tree (Coffea mauritiana) from Reunion Island

Edith Garot *,† 1, Thierry Joet 1, Marie-Christine Combes 1, Philippe Lashermes 1

1 Institut de Recherche pour le Développement (IRD [France-Sud]) – IRD, DIADE, University of Montpellier – 911 avenue Agropolis, BP 6450134394 Montpellier cedex 5, France

Oceanic islands provide unique systems to uncover ecological and evolutionary processes in species. Geographic isolation in combination with habitat diversity have favored processes of speciation and population divergences, leading to high rates of endemism and patterns of local adaptation. However, isolation also resulted in higher vulnerability to external disturbances, such as global climatic changes. Displaying large environmental gradients at small spatial scale, the recently emerged Reunion Island (about 2 Ma), appears as an exceptional laboratory to support such evolutionary studies. Coffea mauritiana is an endemic tree species from Reunion Island and Mauritius. Using genetic approaches, this study aimed to: (1) investigate population divergences of a widespread woody species in Reunion Island; (2) assess the impact of past climatic events on the species demography and its potential ecological niche. A large sampling of C. mauritiana was performed in Reunion Island, followed by genotyping-by-sequencing. Genetic diversity analyses revealed that C. mauritiana populations clustered in regional groups. The low dispersal abilities of the species and the heterogeneous rainfall pattern were pointed out as the main factors contributing to population divergences. Furthermore, SNP markers from a representative set of the C. mauritiana species were used to explore the past demographic history of the species. Demographic inferences revealed a reduction in the effective population size of C. mauritiana during the Last Glaciation Maximum (LGM). By comparing scenarios of paleo-distribution of the species with the present genetic diversity data of the species, a loss of habitat in the western part of the island was suggested in association with a decrease in rainfall and temperature. In conclusion, results on the distribution of C. mauritiana genetic diversity provide guidance for the management of plant conservation on the island. The present work also emphasizes the importance of heterogeneous rainfall pattern as a factor of population differentiation in Reunion Island. Finally, studying the past history of the species provides new insights into Reunion Island forest response to climate change.

Keywords: population divergence, Reunion island, paleoclimate, demographic history, ecological niche modeling

*Speaker
†Corresponding author: edith.garot@ird.fr
Niches in time: Molecular gut content analysis reveals changing ecological relationships among Hawaiian Tetragnatha spiders along a chronosequence

Susan Kennedy *, Henrik Krehenwinkel †, Alexandra Rueda ‡, Allison Barner ‡, Rosemary Gillespie ‡

1 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology – 1919-1 Tancha, Onna-son, Kunigami-gun Okinawa, 904-0495, Japan
2 Environmental Science, Policy & Management, University of California [Berkeley] – Berkeley, CA, 94720, United States
3 Department of Biogeography, Universität Trier – Universitätsring 15D-54296 Trier, Germany
4 Biological Sciences, Universidad de los Andes [Bogota] – Cra 1 N° 18A - 12 Bogotá - 111711, Colombia

Understanding the ecological dynamics of adaptive radiation is a key step toward identifying the nature and timing of the evolutionary processes behind such striking systems. The adaptive radiation of Hawaiian Tetragnatha spiders presents an ideal study system for exploring these dynamics: with ca. 50 species displaying a wide range of morphological and ecological traits, many of these species co-occurring with one another, this group offers an exceptional opportunity to explore niche ecology in an evolutionary context. Moreover, Hawaii’s geologic age structure, from oldest in the northwest to youngest in the southeast, enables inferences on past processes based on present-day patterns in younger habitats. We characterize trophic niche dynamics within the Hawaiian Tetragnatha radiation along a temporal gradient (chronosequence) across the islands of Hawaii, Maui and Oahu. Using molecular gut content metabarcoding, we identify the diets of 23 different species belonging to two clades, which correspond to fundamentally different hunting strategies: web building versus active hunting. We measure the extent to which dietary repertoires overlap on each of the islands, thereby testing how trophic niche dynamics change along the chronosequence. Based on taxonomic classifications of prey to both order and operational taxonomic unit (OTU) levels, we uncover a complex pattern of dietary niche relationships among Tetragnatha species over time. As expected, the two hunting strategies are associated with significantly different diets, a pattern which is especially apparent at the ordinal level of prey. Notably, we also find an apparent decrease in dietary overlap as island age increases, suggesting that the degree of dietary niche partitioning may increase with evolutionary time in this group. Our results largely match expectations based on theory, which predicts that species in younger communities should exhibit high niche overlap while those in older communities show pronounced niche differences.

Keywords: trophic niche ecology, adaptive radiation, Hawaii, chronosequence, metabarcoding, next generation sequencing, gut content analysis

*Speaker
The genomics of founder events in an island colonising bird

Sonya Clegg ∗† 1, Kristen Ruegg 2, Ashley Sendell-Price 1

1 University of Oxford – Department of Zoology, 11a Mansfield Road, Oxford, United Kingdom
2 Colorado State University [Fort Collins] (CSU) – Colorado State University, Fort Collins, Colorado 80523 USA, United States

The role of founder events in shaping the evolutionary trajectory of newly established populations has been a topic of sustained interest in evolutionary ecology. A main focus has been understanding how genetic drift during population founding, and in subsequent generations when population sizes remain small, affects genetic diversity and ultimately evolutionary potential. Both theory and empirical data show that in general, strong and long genetic bottlenecks are required for radical losses of diversity. However, the stochastic loss of some alleles, and shifts in relative frequencies of alleles have the potential to limit and promote responses to selection in novel environments. Genomic methods have provided us with the ability to examine both neutral and selected alleles during colonisation processes. We examine genomic variation in a well-characterised system of naturally-colonised and human-introduced island populations of a bird, the silvereye (Zosterops lateralis), in the southwest Pacific. Using RADseq data, we assess the genomic impact of founding events on genetic diversity and follow the fate of loci under selection, across a series of historically documented, sequential island colonisation events. We found stronger evidence for loss of diversity in populations seeded from human introductions compared to natural colonisations. Despite the sequential nature of colonisation, and repeated phenotypic trends of increased body size in insular silvereyes, loci under selection were idiosyncratic across populations, likely reflecting the polygenic nature of the repeated phenotypic response to island dwelling.

Keywords: genetics, selection, bird, south Pacific, microevolution

∗Speaker
†Corresponding author: Sonya.clegg@zoo.ox.ac.uk
Chloroplast haplotype analysis of Canary islands Micromeria indicate inter-island colonization as factor to explain genetic diversity patterns

Harald Meimberg *,† 1, Manuel Curto 1, Pamela Puppo 2

1 Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (Boku) – Gregor Mendel Str. 33, 1080 Vienna, Austria
2 Department of Biological Sciences, North Dakota State University – Fargo, United States

Genetic diversity on islands in archipelagos might be significantly shaped by interisland geneflow. While this might on one hand contribute to increased diversity levels within islands it also might homogenize differences between islands in species or species groups if hybridization exist. This might lead to the impression of a monophyletic origin of island taxa and to an underestimation of evolutionary distances between species, especially if sequence data from organelles are studied. Here we investigate chloroplast haplotype diversity for Micromeria of the Canary islands. A recent morphological revision and molecular data support that the genus consist here exclusively of single island endemic species. Phylogenetic and nuclear genotype analysis show that geneflow between the species exist and evolution of the genus is highly influenced by hybridization. We constructed a network of chloroplast haplotypes using multilocus Next Generation Sequencing approaches to increase resolution compared to earlier studies. Around 500 samples were investigated for the archipelago comprising all species and islands which are assigned to 94 haplotypes defined using 5500 bp of 11 loci. All marker systems investigated so far, show very strong connectivity between the younger islands of the archipelago. CpDNA shows low genetic structure between some of the islands that result from the pattern of shared haplotypes. Species can have multiple haplotypes in common also between islands which strongly indicate sequential interisland colonization as seeds, especially between La Gomera, Tenerife, and La Palma. The pattern suggest, that when single colonizers arrive as seed, they might hybridize with already established individuals as pollen donors. Because chloroplast DNA is inherited maternally, resulting populations contain then the haplotypes of the colonizer. Such a model would explain inconsistencies between cpDNA and nuclear markers: Within islands different haplotypes can be found in species with low nuclear genetic diversity, between islands haplotypes can be shared in different species with high nuclear genetic diversity. The model would also explain the persistence of the different cpDNA markers in the species even if probably originated from single colonizing individuals. Overall, this can lead to high diversity of cpDNA markers within an island.

Keywords: cpDNA haplotypes, NGS, interisland, colonization, genetic diversity, Micromeria, Canary islands

*Speaker
†Corresponding author: meimberg@boku.ac.at

sciencesconf.org:ib2019:253332
Adaptive consequences of introgression during the differentiation of Micromeria in the Canary islands

Manuel Curto *† 1, Harald Meimberg 1

1 University of Natural Resources and Life Sciences [Wien] (BOKU) – Universität für Bodenkultur Wien
Gregor Mendel Straße 33, A-1180 Wien, Austria

Introgression can contribute to the transfer of adaptive traits from allowing for species to occupy new ecological conditions. This process will be more prominent in species that underwent continuous gene-flow during the differentiation process, which is the case of the Micromeria endemics from the Canary Islands. This genus has a group of six species sharing morphological traits but with different origins indicating convergent evolution, however without an apparent ecological significance. Previous studies shown that hybridization, promoted by continuous inter island colonization, shaped the distribution of genetic diversity for these endemics. The resulting introgression amongst could also have contributed to the distribution of similar traits in different lineages having some of these adaptive potential. We tested this hypothesis by evaluating the phylogenomic relationships of Micromeria and potential introgression patterns, with special focus on these six species. Phylogenies were calculated using coalescent and non-coalescent approaches to evaluate the impacts of incongruent phylogenetic signal. Evidences of introgression were search based on D-statistics. Although with coalescent methods the phylogenetic pattern was congruent with species delimitations, this was not the case when a concatenated matrix was analyzed being rather related with ecological conditions for some of the populations. This was the case of the M. canariensis populations restricted to the laurel forest in Gran Canaria that are closer related with M. gomerensis from La Gomera than to the other conspecific populations. Introgression involving these species was also found, which may be behind the incongruence topologies found between coalescent and non-coalescent approaches. This result implies that introgression signal is congruent with ecological conditions making us hypothesize that it may have contributed to the transmission of adaptive important traits. Further studies evaluating the genomic regions involved in introgression and their function should be performed. Moreover, it is necessary how common this process is during Micromeria divergence. This way it will be possible to better understand the adaptive consequences of inter-island introgression and what is its role in the distribution of adaptive traits.

Keywords: introgression, convergent evolution, colonization, Canary islands, phylogenomics

*Speaker
†Corresponding author: manuel.curto@boku.ac.at
Evolution of reproductive barriers in sympatric Arctic charr morphs in Thingvallavatn (Iceland)

Kalina Kapralova *,† 1, Quentin Horta-Lacueva 1, Sigurdur S. Snorraso n 1

1 University of Iceland – Askja, Sturlugata 7 101 Reykjavik, Iceland

The evolution and maintenance of reproductive barriers is a central topic in evolutionary biology as this is fundamental part of the process of speciation. As with most research on evolution, studies of speciation are difficult and the details of the underlying mechanisms are often poorly understood. Systems where closely related species or populations of the same species that have undergone adaptive divergence, come into contact are natural test beds for research on this topic. The Arctic charr (Salvelinus alpinus) of lake Thingvallavatn, Iceland is ideally suited for such studies. The lake was formed at the end of the last glacial epoch just 11-10 thousand years ago and despite its young age it now harbours four morphs of Arctic charr whose distinct variation in life history characteristics, behavior and trophic morphology suggest rapid adaptive diversification, possibly followed by, or causing build-up of reproductive barriers. In this project we focused on the two smallest morphs: a planktivorous (PL) and small benthic charr (SB), which have diverged along the limnetic (open water) - benthic (lake bottom) ecological axis. The central hypothesis underlying our investigation was that reproductive isolation between SB and PL charr is partly due to a strong negative selection against their hybrid offspring. In a common-garden laboratory experiment, we tested whether PL-SB hybrids differ from the pure parental morphs (PL and SB) in the distribution of personality traits and how this correlates with ecologically relevant behavioural- (feeding behaviour) and non-behavioural traits (yolk-sac shape and resorption, head morphology, growth rate). Our results show that PL-SB hybrids exhibit extreme (outside of the parental range) head morphologies. They also follow different ontogenetic trajectories, grow more slowly than the pure parental morphs and also show inconsistencies in their personality traits. These results point towards PL-SB hybrids having reduced fitness and support our main hypothesis of selection acting against hybrid offspring. These findings about reduced fitness in hybrids, combined with striking recent divergence in the system, represent key new information on early stages of speciation in this system, and thus have potentially critical implications for how lake Thingvallavatn and other such systems are managed.

Keywords: reproductive barriers, speciation, Arctic charr, adaptive divergence, Iceland

*Speaker
†Corresponding author: kalina@hi.is
Interdisciplinary Island Studies

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detecting burnt scars from space: A case study of the January 2019 wildfires along the eastern flank of Piton de la Fournaise Volcano, La Réunion, Thibault Catry [et al.]</td>
<td>35</td>
</tr>
<tr>
<td>Spatial footprint of natural disasters: opportunities and challenges for remote sensing in the south-western Indian Ocean, Christophe Révillion [et al.]</td>
<td>36</td>
</tr>
<tr>
<td>Anoles & Drones: Revealing controls on distribution and microhabitat use of Anolis lizards in a changing island landscape using emerging remote sensing technologies, Emma Higgins [et al.]</td>
<td>37</td>
</tr>
<tr>
<td>An open network to monitor marine environment and species, Sylvain Bonhommeau [et al.]</td>
<td>38</td>
</tr>
<tr>
<td>Marine sponges from Indian Ocean, a highly promising source for the discovery of novel bioactive compounds to fight against ageing and age-related diseases, Pierre-Eric Campos [et al.]</td>
<td>39</td>
</tr>
<tr>
<td>Monitoring of fish communities and benthic habitats from unbaited underwater video techniques with applications to Indian Ocean conservation and fisheries management challenges, David Roos [et al.]</td>
<td>40</td>
</tr>
<tr>
<td>Isolated Indian Ocean islands: little POPs, some heavy metals, and much plastics, Hindrik Bouwman [et al.]</td>
<td>41</td>
</tr>
<tr>
<td>Unsanctioned imports: the problem of plastic debris in small island states, April Burt</td>
<td>42</td>
</tr>
</tbody>
</table>
Detecting burnt scars from space: A case study of the January 2019 wildfires along the eastern flank of Piton de la Fournaise Volcano, La Réunion

Thibault Catry *,† 1, Nicole Richter 2, Christophe Révillion 3, Francois Martel-Asselin 4, Nicolas Villeneuve 2,5, Aline Peltier 2

1 ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, IRD – Institut de Recherche pour le Développement, Université de Perpignan Via Domitia, Université de la Réunion, Université de Montpellier, Université de Guyane, Université des Antilles (Pôle Martinique), Université des Antilles (Pôle Guadeloupe) – IRD - Maison de la Télédétection - 500 rue Jean-François Breton - 34093 Montpellier, France
2 Observatoire Volcanologique du Piton de la Fournaise (OVPF) – IPGP, 14 RN3-Km27, 97418, La Plaine des Cafres, La Réunion, France, Réunion
3 UMR 228 Espace-Dev, Espace pour le développement – UMR 228 Espace-Dev, Université de La Réunion, Saint-Denis – Université de La réunion, France
4 Journal de l’Ile de La Réunion (JIR) – Saint Denis, Réunion
5 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion

Like many other tropical environments, La Réunion island hosts a vast variety of indigenous and endemic species. This is not only due to its geographical isolation in the Indian Ocean, but also because of the rich diversity of natural habitats, and the existence of many micro-climates. The island is of volcanic origin and the landscapes of its eastern part are, until today, continuously transformed by the active Piton de la Fournaise Volcano. Besides frequent volcanic eruptions that produce basaltic lava flows, wildfires also threaten the vegetation along the volcano’s flanks. A major wildfire occurred between 20 and 27 January, 2019, in the Grand Brûlé, an area characterized by extremely steep slopes, dense vegetation and seaward ground movement of ≈3 cm/yr that is caused by gravitational edifice spreading. The area affected by the fires was estimated to roughly 2000 ha by the Service Départemental d’Incendie et de Secours (SDIS). We used Synthetic Aperture Radar (SAR) imagery collected by the European Sentinel-1 satellite in order to more accurately map the extent of the burn scar by applying two main techniques: a) a change detection technique comparing the backscatter intensity before (2019/01/17) and after (2019/01/29) the wildfires, and b) SAR interferometry, a technique that allows tracking surface changes over time by calculating the difference between the post- minus the pre-event interferometric coherence in order to estimate the areas of vegetation loss. Our results suggest that a minimum of 1500 ha of vegetation were lost during the fires. Ground investigations during and after the event allowed for the identification of two main types of fire dynamics: a) In densely forested areas, mainly the ground vegetation was destroyed, while larger trees survived, producing characteristic discontinuous patterns in satellite imagery, b) Mosses and lichens covering younger lava flows burned entirely, appearing as distinctive continuous patterns in satellite imagery. Our analysis helped mapping and characterizing the total area affected by the January 2019 wildfires along the eastern flank of Piton de la Fournaise Volcano, and demonstrates the applicability of SAR satellite imagery for rapid mapping of burnt scars.

Keywords: La Réunion, wildfire, biodiversity, SAR remote sensing, coherence

*Speaker
†Corresponding author: thibault.catry@ird.fr
Spatial footprint of natural disasters: opportunities and challenges for remote sensing in the south-western Indian Ocean

Christophe Révillion *,† 1, Thibault Catry 2, Pascal Mouquet 3, Valère Dufay 3, Johary Rosa 4, Cyprien Alexandre 3, Gwennaelle Pennober 5

1 ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, Université de La Réunion – Université de la Réunion – Station SEAS-OI, 40 avenue de Soweto, 97410 Saint-Pierre, La Réunion, France, France
2 ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, IRD – Institut de Recherche pour le Développement, Université de Perpignan Via Domitia, Université de la Réunion, Université de Montpellier, Université de Guyane, Université des Antilles (Pôle Martinique), Université des Antilles (Pôle Guadeloupe) – IRD - Maison de la Télédétection - 500 rue Jean-François Breton - 34093 Montpellier, France
3 ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, IRD – Institut de Recherche pour le Développement – Station SEAS-OI, 40 avenue de Soweto, 97410 Saint-Pierre, La Réunion, France, France
4 Institut et Observatoire Géophysique d’Antananarivo (IOGA) – Arabe Jeneraly Charles de Gaulle, Antananarivo, Madagascar, Madagascar
5 ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, Université de La Réunion – Institut de Recherche pour le Développement – 15 Avenue René Cassin, Sainte-Clotilde 97715, France, France

The concept of spatial footprint is classically used to describe the geographical impact of a natural event on landscape. From the perspective of remote-sensing, this footprint can be assessed by implementing methodologies to detect changes in the spectral signature of a pixel or an object contained in multiple dates or time-series images. Since the 2000s, various phenomena such as forest fires, hurricanes, floodings and coral bleaching have been monitored using change detection approaches throughout the western Indian Ocean, including La Réunion. The methodologies and results of these studies are presented here highlighting their contribution in the assessment of impacts on insular territories. On the basis of results obtained locally and regionally (projects RENOV-RISK Impact, TAIMPO, Becoming,…), we introduce the fundamentals and future opportunities of such methods in the context of Big Data (large volume of data, at high temporal and spatial resolutions) with national and international programs such as THEIA, GEOSUD, Kalideos or Copernicus. These programs favor the free distribution of earth observation data, products and methodologies from high-resolution optical and SAR sensors (Landsat, Sentinel 1 and 2…). We will evidence (i) the importance of developing generic preprocessing chains and producing standardized products, regardless of acquisition specifications, to be used for temporal analysis dedicated to landscape evolution monitoring, in various geographical contexts, and for a large range of thematic applications, (ii) the interest of building generic change detection toolboxes through the production of simple standardized products (NDVI, NDWI, IB on optical data and normalized difference on SAR), to widen the applications based on earth observation data and make such technologies available to larger user communities.

Keywords: natural disasters, change detection, spatial footprint, SAR remote sensing, optical remote sensing

*Speaker
†Corresponding author: christophe.revillion@univ-reunion.fr
Anoles & Drones: Revealing controls on distribution and microhabitat use of Anolis lizards in a changing island landscape using emerging remote sensing technologies

Emma Higgins *† 1, Doreen Boyd 1, Tom Brown 1,2, Adam Algar 1

1 University of Nottingham, UK (UON) – University of Nottingham University ParkNottingham NG7 2RD, United Kingdom
2 Kanahau Utila Research and Conservation Facility (Kanahau) – Pumpkin Hill Road, Utila, Honduras, Honduras

In these times of rapid environmental change and species extinction, understanding the drivers governing species’ abundance and distribution is more important than ever. The goal of this work is to further our understanding of what drives variation in species’ abundance and microhabitat use through space, particularly in the context of rapid land cover change and biological invasion. Using the little explored anole (Anolis) fauna of the Honduran island of Utila. Here, we test theory linking sub-canopy thermal conditions to canopy density, evaluate the capacity of unmanned aerial vehicles (UAVs) to predict fine-scale heterogeneity in thermal habitat quality in forest, plantation, mangrove and urban environments, and evaluate thermal implications for endemic and invasive anoles. Pilot work coupled operative temperature data (morphologically accurate 3D models fitted with data loggers), with UAV derived NDVI measurements. Results reported a significant relationship (P < 0.001) that as spatial heterogeneity in NDVI increases, so does the standard deviation of operative temperature. Therefore, measurements of canopy structure from UAVs have the potential to provide fine-scale predictions of spatial heterogeneity of thermal habitat quality for animals at greater resolutions than can currently be obtained from existing microclimate datasets and methods. Pilot work also revealed a distinct habitat preference in the endemic Anolis bicaorum and has noted an increased range and habitat usage of the invasive Anolis sagrei. To evaluate thermal suitability of each Utila’s habitats, the number of hours that operative temperature was within Tbreadth (range of temperatures where animal can reach 80% of its maximal performance) for each anole species was calculated. Results indicate most habitats are more thermally suitable for A. sagrei than A. bicaorum, apart from forest which is too cool for A. sagrei. Unexpectedly, thermal suitability of urban plots was not substantially higher for A. sagrei than A. bicaorum. Therefore, distribution of Utila’s anoles are not solely driven by thermal suitability, future work will evaluate the role of predation, food resources and habitat structure. This work allows us to improve our understanding of Utila’s Anolis fauna, promote its conservation and demonstrate how emerging technologies can help us understand and preserve the natural world.

Keywords: conservation, remote sensing, biological invasion, microhabitat, thermal ecology

*Speaker
†Corresponding author: emma.higgins@nottingham.ac.uk
An open network to monitor marine environment and species

Sylvain Bonhommeau *, Serge Bernard 2, Vincent Kerzerho 2, Pierre Gogendeau 1, Tristan Rouyer 3, Anne-Elise Nieblas 4

1 IFREMER Délégation de l’Océan Indien (IFREMER DOI) – rue Jean Bertho - BP60 97420 LE PORT, Réunion
2 Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) – Université de Montpellier : UMR5506, Centre National de la Recherche Scientifique : UMR5506 – 161 rue Ada - 34095 Montpellier, France
3 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut français de Recherche pour l’Exploitation de la Mer : UMR9190 – Centre de Sète UMR MARBEC SETE - Avenue Jean Monnet - CS3017134203 SETE CEDEX, France
4 Company for Open Ocean Observations and Logging (COOOL SAS) – 61 rue Haute - 97436 Saint Leu, Réunion

Data acquisition and monitoring of marine species and their environment is a major challenge in ecology and conservation. Marine scientific instruments (beacons, tags, buoys) are generally very expensive tools that do not allow large scale and numerous monitoring. Various research projects are being carried out to provide connected instruments at a reduced cost. For this purpose, free electronics and transmission methods using the Internet of Things technology have been developed to provide open access data. For the moment, we have been able to develop tags to track the movements of marine turtles in a network of ground stations and buoys recording physical information (temperature, wave height). Tags cost less than 100 € and buoys cost about 300 €, which is almost 10 times less expensive than commercial instruments. The instruments are developed so they are resistant to extreme conditions of tropical remote islands, autonomous in energy, and being able to transfer data remotely without a cell or internet network around. These initial results show the possibility of establishing a large-scale network for monitoring environmental conditions and marine animals at reasonable costs. The codes and hardware being free, this allows everyone to add or customize the specifications of the objects according to the scientific questions asked.

Keywords: buoy, LoRa, low cost, tag, turtle
Marine sponges from Indian Ocean, a highly promising source for the discovery of novel bioactive compounds to fight against ageing and age-related diseases

Pierre-Eric Campos *, Florent Tintillier, Charifat Saïd Hassane, Patricia Clerc, Bernard Boyer, Nikolas Fokialakis, Ioannis P. Trougakos, Konstantinos Gardikis, Christine Wenzkowski, Jérôme Bignon, Géraldine Le Goff, Céline Moriou, Ali Al-Mourabit, Laurent Dufossé, Mireille Fouillaud, Anne Bialecki, Jamal Ouazzani

1 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA) – Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 SAINT DENIS CEDEX 9, Réunion
2 Faculty of Pharmacy, National & Kapodistrian University of Athens – Panepistimiopolis of Zographou 157 71 Athens, Greece
3 Faculty of Biology, National & Kapodistrian University of Athens – Panepistimiopolis of Zographou – 15771 Athens, Greece
4 APIVITA SA – Industrial Park of Markopoulo Mesogias, 19003 Markopoulo Attiki, Athens, Greece
5 Crelux GmbH – am Klopfersitz 19a – 82132 Martinsried, Germany
6 Institut de Chimie des Substances Naturelles (ICSN) – Centre National de la Recherche Scientifique : UPR2301 – Avenue de la terrasse 91198 Gif sur yvette cedex, France

Ageing is commonly defined as the accumulation of diverse deleterious changes occurring in cells and tissues with advancing age that are responsible for the increased risk of pathologies such as Alzheimer’s disease, cardiovascular diseases, neurodegeneration or cancers. As the population of developed countries is ageing, the prevalence of a variety of age-related diseases is increasing. In order to counteract this major healthcare challenge, marine natural products represent an extraordinary reservoir of structurally diverse bioactive metabolites which may present anti-ageing properties and offer pharmaceutical, cosmeceutical or nutraceutical applications. Taking into consideration the aforementioned issues, the H2020 European project TASCMAR explores marine invertebrates and symbionts from under-investigated marine biodiversity hotspots and develops innovative approaches for the discovery and production of compounds with anti-ageing activity. The Chemistry Laboratory of Natural Substances and Food Sciences (LCSNSA, University of La Réunion) located at Réunion island is involved in this ambitious research program and this communication will therefore provide an outline of its contribution to TASCMAR. We collected a total of 112 sponges from Mayotte and Rodrigues (Indian Ocean). The crude extracts of the samples were submitted to a biological evaluation against a wide range of different targets involved in ageing or age-related diseases. These targets include catalase, sirtuin 1, CDK7, proteasome, Fyn kinase, tyrosinase and elastase. Twenty nine crude extracts have shown promising results. The chemical investigation of these 29 extracts for the discovery of molecules with anti-ageing effects will be discussed.

Keywords: age related diseases, anti ageing activity, marine sponges, novel bioactive compounds, TASCMAR

*Speaker
Monitoring of fish communities and benthic habitats from unbaited underwater video techniques with applications to Indian Ocean conservation and fisheries management challenges

David Roos *† 1, Dominique Pelletier ‡ 2, Thomas Claverie 3,4

1 Délégation Océan Indien (DOI) – IFREMER – Rue Jean Bertho BP60, France
2 Unité Ecologie et Modèles pour l’Halieutique (EMH) – IFREMER – Centre Atlantique - Rue de l’Ile d’Yeu - BP 21105 - 44311 Nantes Cedex 03, France
3 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR_D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Centre Universitaire de Mayotte Route Nationale 3 - BP 53 97660 DEMBENI Mayotte, France
4 Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) – Route nationale 3, BP53 97660 Dembéné, Mayotte

In coastal areas, anthropogenic pressures are intense and spatially organized, and benthic habitats are heterogeneous, both locally and at larger scales. Monitoring-based assessment of fish communities and biotic habitats in such areas generally suffers from a poor spatial replication, which makes the area-wide assessment of key biological components, such as fish communities and benthic habitat, quite challenging. This paper presents the data obtained from unbaited remote underwater video system designed to address such challenges (STAVIRO) developed from 2007. The STAVIRO is a standardized methodology for field work, for analysing footages and for assessment. This system enables monitoring and studying shallow biodiversity, mostly in coastal areas (between 0 and 70 m), providing observations of habitat and vagile macrofauna. The rotation provides a panoramic view without distorting image due to wide angle. Not requiring divers, nor a scientific background on the field, many observations can be collected, ca. 20-25 stations per day on a small boat with two systems, allowing to survey potentially vast areas on both soft and hard substrates, and to replicate observations, using a standardized protocol. The STAVIRO results from EPICURE project allowed us to estimate the health status of fish communities at Geyser bank, and more specifically the main commercial fish species targeted at the onset of the artisanal hook fishery from Mayotte Island. The large species of serranidae, lutjanidae, lethrinidae and carangidae constituted the bulk of the annual catches landed in the years 1990. Depending species and sites, results highlighted a) unbalanced stocks in size distribution; b) low abundances levels, even cases of rarefaction of the largest targeted species (total length > 60 cm); and c) significantly higher abundances for gregarious species with a maximum size generally less than 60 cm. These results are obvious signs of overexploitation for the major commercial great species targeted by fisheries. They will be helpful for supporting forthcoming decisions related to fisheries management, and they provide a baseline for future assessments and for research.

Keywords: underwater video system, fish communities, reef habitats, fisheries assessment, fish monitoring

*Speaker
†Corresponding author: david.roos@ifremer.fr
‡Corresponding author: dominique.pelletier@ifremer.fr
Isolated coral reef islands in the Western Indian Ocean (WIO) collect marine debris from distant sources. We traced plastics and other items found on Agalega and St. Brandon’s to have originated in Southeast Asia and the Arabian Sea. Analyses of the plastics revealed appreciable concentrations of persistent organic pollutants (POPs) and mercury. We have also found plastics in nests of Brown Noddies and Sooty Terns. However, it does not seem as if these pollutants actually transfer into marine bird eggs. Tern eggs from Rodrigues for instance, contain some of the lowest POP concentrations anywhere in the world. On the other hand, some of the corals from St. Brandon’s contain higher concentrations of some metals than corals from elsewhere in the Indian Ocean. The ecotoxicology of WIO islands remains understudied. Interactions of biota with climate change, ocean acidification, and a probable increase in pollutant and plastics releases, may pose a significant threat to coral reef islands.

Keywords: pollution, plastics, birds, coral

*Speaker
†Corresponding author: henk.bouwman@nwu.ac.za
Unsanctioned imports: the problem of plastic debris in small island states

April Burt * 1,2

1 University of Oxford [Oxford] – Plant Sciences, United Kingdom
2 Seychelles Islands Foundation – Victoria, Mahe, Seychelles

Plastic production has increased from 1.7 million tons in 1954 to 335 million tons in 2016 (Plastic Europe, 2017), with approximately 8 million tons of plastic entering the ocean annually – largely as a result of mismanaged waste. A study of the world’s waste management shows that the Indian Ocean is fringed by countries with 100% mismanaged waste. This plastic is transported by currents and winds throughout the world’s oceans, with the end point for some being remote islands in biodiversity hotspots. The Seychelles is an archipelago of over 115 islands, stretching over 1.4 million km2 of the Western Indian Ocean. Vast quantities of marine plastic pollution have accumulated along the coastlines of these islands and this is now affecting some of the Seychelles’ endemic and endangered wildlife. Increased understanding and effective management of this is greatly needed. Surveys to assess quantity, composition, accumulation rate, attached biota, and removal effort were conducted alongside the Aldabra Clean-Up Project in March 2019, an international initiative to clear Aldabra Atoll UNESCO World Heritage Site of accumulated waste. I will present on the total waste found to have accumulated on Aldabra, total waste removed, the effort per unit of waste removed, removal costs, and seasonal accumulation rates. Initial surveys show that consumer items on the north coast and fishing gear on the south coast dominate composition. Additionally, I will present the proportion of debris arriving with attached biota and the types of biota recorded. Islands might only produce a small amount of waste internally, and yet receive huge amounts of waste from other countries – these island nations are therefore unwillingly importing large amounts of waste, which must then be managed. The threat plastic pollution poses to even remote and otherwise well-protected islands is vast and will require considerable allocation of resources to mitigate. The composition of waste found on Aldabra demonstrates that whilst reducing land to sea pollution pathways must be a priority, the fisheries sector must also greatly reduce their marine pollution. Lastly, island managers must consider the potential impact that increased species connectivity via plastic pollution will have on island ecosystems.

Keywords: plastic pollution, rafting biota, threat management, Protected area, Seychelles

*Speaker

sciencesconf.org:ib2019:251750
Marine Ecology

Contents

Long-term monitoring of coral reefs in the Mozambique Channel (Indian Ocean): paving the way towards integrative regional management, Pascale Chabanet [et al.] . 44

Functional vulnerability in Western Indian coral reef fishes: indicator species and conservation priorities, François Guilhaumon [et al.] . 46

Energy packing of reef fish communities in isolated oceanic islands, Diego Barneche . 47

Multi-scale effects of environmental stress on reef fish communities of the Galapagos islands, Robert W. Lamb [et al.] 48

A continent-island model of gene flow in a marine fish from the Western Indian Ocean, Thierry Hoareau [et al.] 49

The Alcyonacea (Octocorallia) on coral reefs at Europa Island: How are they connected with other soft coral communities in the Mozambique Channel?, Michael Schleyer [et al.] 50

Environmental drivers effects on the structure and functioning of rhodolith marine habitats in Central-Eastern Atlantic Islands, Otero Ferrer Francisco [et al.] 51

What functional space to use to characterize species functions in ecosystems?, Thomas Claverie [et al.] 52
Long-term monitoring of coral reefs in the Mozambique Channel (Indian Ocean): paving the way towards integrative management

Pascale Chabanet *,† 1, Serge Andrefouet 1, Lionel Bigot 1, Marc Bouvy 1, Chloé Bourmaud 1, Estelle Crochet 1,2,3, Patrick Durville 4, Pauline Gelin 1, François Guilhamon 5, Hélène Magalon 1, Jean-Benoît Nicet 6, Natacha Nikolic 3,5, David Obura 7, Gwennaelle Pennober 2, Melita Samoilys 7, Michael Schleyer 8, Mathieu Sere 1, Emilie Boissin 9

1 ENTROPIE – (IRD, UR, CNRS), Labex Corail, IRD Réunion, CS 41095, 97495 Sainte Clotilde cedex, La Réunion, France.
2 IRD / ESPACE-DEV (UMR 228) – Parc Technologique Universitaire, 2 rue Joseph Wetzell, CS 41 095, 97495 Sainte Clotilde Cedex, La Réunion, Réunion.
3 Agence de Recherche pour la Biodiversité à la Réunion (ARBRE) – 18 rue des Seychelles, Lotissement Horizon, 97436 Saint-Leu, Réunion.
4 GALAXEA – La Réunion, Réunion.
5 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR_D 248, Centre de Sète UMR MARBEC SETE - Avenue Jean Monnet - CS3017134203 SETE CEDEX, France.
6 MAREX – La Réunion, Réunion.
7 CORDIO East Africa – Kenya, Kenya.
8 ORI – South Africa, South Africa.

Understanding the functioning of coral reefs and their resilience to disturbance requires long-term studies of sites subjected to contrasting anthropogenic pressure but similar climatic forcing. A better understanding of the connectivity between marine populations is also essential for management. In this context, the SIREME program (Monitoring and Inventory of coral reefs of Mayotte and the Iles Eparses) was conducted in the Indian Ocean to measure the state of health of coral reefs and evaluate the connectivity between islands in the Mozambique Channel. The main coral reef components (corals, fish and microplankton) were monitored in Mayotte and Iles Eparses using underwater visual census techniques and habitat were mapped through satellite and field data. The degree of connectivity between island reefs was assessed in genetic studies and hydrodynamic simulations. Monitoring indicators were proposed to estimate the effectiveness of management measures. In Mayotte, fish biomass (2) has declined drastically over the last decade (high fishing pressure), in particular at higher trophic levels. Nevertheless coral and fish diversities were high, as was the total species richness, due to favourable geological and hydrodynamic conditions in the northern Mozambique Channel. In the Iles Eparses, the coral reefs were stunning, reflected either by high coral cover (e.g. Europa) or the dominance of “living corals-CCA” compared to soft algae (e.g. Glorieuses). A high biomass (up to 10 times higher/Mayotte) and proportion of predators and large specimens characterized these fish communities. Connectivity between islands differed according to species studied. Hydrodynamic modeling highlighted strong inter-connectivity between the reefs of the Mozambique Channel, particularly Glorieuses and Mayotte, favouring their resilience. However, more isolated islands such as Europa, located to the south, may be more vulnerable to repeated bleaching events.

*Speaker
†Corresponding author: pascale.chabanet@ird.fr
Keywords: biodiversity, connectivity, coral reefs, indicators, management
Functional vulnerability in Western Indian coral reef fishes: indicator species and conservation priorities

François Guilhaumon *,† 1,2, Marie-Paule Savelii 3, Lionel Bigot 4, Patrick Durville 5, Tom Matthews 6, Pascale Chabanet 2

1 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Université de Montpellier, Place Eugène Bataillon, Montpellier, France
2 Écologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) – Centre National de la Recherche Scientifique : UMR9220, Université de la Réunion, Institut de Recherche pour le Développement – UNIVERSITE DE LA REUNIONFaculté des Sciences et Technolo15 Avenue René CasinBP 9200397744 ST DENIS CEDEX 9, France
3 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Centre de Sète UMR MARBEC SETE - Avenue Jean Monnet - CS3017134203 SETE CEDEX, France
4 University of Reunion Island – University of Reunion Island – 97490 Sainte-Clothilde France, France
5 galaxea – SAS Galaxea – 30 rue des Mouettes. 97 434 Saline les Bains. La Réunion, France
6 University of Birmingham [Birmingham] – EdgbastonBirmingham B15 2TT, United Kingdom

Due to limited resources and the high species richness observed in coral reefs, scientists and managers have to focus monitoring activities on a subset of taxa. Here, in the context of the SIREME project (10th EDF Indian Ocean), we investigated the functional structure of wilderness coral reef fish assemblages of the Western Indian Ocean (WIO) : Mayotte and the Îles Éparses, Mozambique Channel. By studying the relationship between function importance and vulnerability, we illustrate an approach useful to characterise particular species and populations as conservation priorities. We evaluated the functional diversity (FD) and vulnerability of fish assemblages in various coral reefs in the WIO. Fish species were described using six functional traits. Functional entities (FEs) were defined as unique combinations of these traits, with each species belonging to a single FE. We used biomass as a proxy for measuring the importance of FEs and functional vulnerability using the distribution of species, individuals and sensitivity to fishing across FEs. By combining information on vulnerability and importance, we identify FEs – and thus species – that are priorities for future monitoring and conservation actions. Using beta-diversity measures, we evaluated the congruence of functional conservation priorities across assemblages. A total of 398 species distributed among 162 FEs were identified. We found that the distribution of species and individuals within these FEs was uneven, and that many FEs appear vulnerable to the loss of species or individuals. The beta-diversity of priority FEs was found to be moderate or high across the six assemblages. The functioning of reef fish assemblages in the WIO is highly vulnerable to the loss of species and individuals. Because priority FEs are dissimilar across islands, management measures should be adapted to each system. We show that the approach adopted in this study is useful for identifying priority species for conservation and management purposes in coral reefs.

Keywords: conservation priorities, coral reefs, functional diversity, functional vulnerability, Îles Éparses, Western Indian Ocean

*Speaker
†Corresponding author: francois.guilhaumon@ird.fr
Energy packing of reef fish communities in isolated oceanic islands

Diego Barneche \(\ast \) \(^{1} \)

\(^{1}\) University of Exeter – College of Life and Environmental Sciences, Penryn, TR10 9FE, United Kingdom

Underwater, tropical oceanic islands are generally portrayed as oligotrophic environments, occasionally subsidised in energy from different sources, for instance guano from land, or nutrients from upwelling events. However, we still lack (1) quantitative estimates of the amount of energetic subsidise entering marine communities in isolated tropical oceanic islands, and (2) understanding of the potential drivers for these subsidise. Here I use a theoretical approach based on first principles of energy-mass balance to quantify the fraction of reef-fish carbon consumption that is likely to be dependent from allochthonous sources in oceanic islands all over the globe. For that, I use a meta-analysis of fish respiratory rates combined with a recent global dataset of reef-fish community structure, and satellite-derived data. Preliminary results indicate that oceanic islands in the Tropical Eastern Pacific and central Atlantic are heavily subsidised, primarily through trophic levels that utilise plankton as a major food source. In this talk I will discuss how much of this subsidise can be explained by a number of biotic and abiotic factors, for the entire community and different trophic groups.

Keywords: metabolic theory, coral reefs, energetics, respiration, carbon cycle
Multi-scale effects of environmental stress on reef fish communities of the Galapagos islands

Robert W. Lamb, Franz Smith, Jon D. Witman

Brown University – Department of Ecology and Evolutionary Biology. 80 Waterman St., Providence, RI 02912, United States

Woods Hole Oceanographic Institution (WHOI) – 266 Woods Hole Road Woods Hole, MA 02543-1050, United States

Ecological communities on islands are composed of subsets of species pools from colonizing “mainland” sources. On oceanic archipelagos such as the Galapagos Islands, marine faunas derive from multiple biogeographic sources and occupy a broad range of ecological niches. It is unclear which biogeographic and ecological traits will confer population stability as environmental stressors become more extreme with climate change. We used a 6-year monitoring program of the wide oceanographic variation and relatively pristine fish communities of the Galapagos islands as a model system to study ecological outcomes and population dynamics in response to variation in environmental stress occurring at different spatio-temporal scales. In response to a local, high-frequency stress (wave exposure), we found that speed of locomotion dictates the ability of herbivores to navigate high wave exposure. Fast-moving herbivorous fishes alternate between feeding patches and refuges from stress at a higher frequency than the return time of extreme wave-induced flow speeds. At these small (ecological) spatio-temporal scales, mobility is the factor that best predicts a species’ ability to continue feeding and exerting top-down control of benthic communities under periodic environmental stress. Tracking reef fish population trajectories over 6 years in response to a regional, low-frequency stress (El Niño events), we compared the predictive capacity of factors directly related to physiological tolerance to climate change (biogeographic and phylogenetic effects) with traits indirectly related to the effects of climate change on limiting resources (trophic and habitat effects). Planktivores were extremely susceptible to population declines during El Niño, but showed remarkable resilience by bouncing back during the subsequent La Niña one year later. Species derived from Indo-Pacific and Panamic lineages were also mildly favored during El Niño relative to Peruvian species. Our results suggest that mobility is a key behavioral trait for stress avoidance in the short term, and that limiting resources (such as planktonic food) are a better predictor of the long-term response of marine fish populations to climate change than proxies of physiological tolerance to changing environmental conditions.

Keywords: climate change, community ecology, El Niño, population dynamics, reef fish

*Speaker
†Corresponding author: Robert_lamb@brown.edu
A continent-island model of gene flow in a marine fish from the Western Indian Ocean

Thierry Hoareau ∗† 1, Ilkser Kiper 1, Philippe Borsa 1,2

1 University of Pretoria – Dept. Genetics, Private bag X20, Hatfield, South Africa
2 Institut de Recherche pour le Développement – Institut de recherche pour le développement [IRD] : UMR250 – Montpellier, France

The continent-island model of gene flow has been central to better understand the impact of migration in island populations, but it has rarely been applied to marine species. The meridional part of the Western Indian Ocean (WIO) is characterized by a patchy distribution of reef habitats that matches a continent-island model, with a large network in the Mozambique Channel and peripheral habitats representing independent ecoregions (Mascarenes). Here, we use the cordonnier Siganus sutor inhabiting reef flats and lagoons of the region, to explore a special case of the continent-island model with bidirectional gene flow. Using multiple markers and samples throughout the WIO, we confirmed the existence of two populations in the cordonnier, one large in the Mozambique Channel and one in the Mascarene that probably diverged during the Last Glacial Maximum. Despite the main westward oceanographic circulation, the gene flow occurred predominantly from The Mozambique Channel to the Mascarene, as expected under a continent-island migration model. Modelling and simulations confirm that migration has a large effect on the allele frequency of the island population while the continent population stays intact when assuming bidirectional gene flow and a sufficiently large difference in population sizes between the continent and the island. These observations bring new lights on the patterns of bidirectional asymmetrical gene flow frequently observed in the literature.

Keywords: Asymmetric gene flow, marine biogeography, continent, island model, dispersal, environmental factors, genetics

∗Speaker
†Corresponding author: thierry.hoareau@up.ac.za
The Alcyonacea (Octocorallia) on coral reefs at Europa Island: How are they connected with other soft coral communities in the Mozambique Channel?

Michael Schleyer∗†1, Nicola Downey-Breedt 2, Yehuda Benayahu 3

1 Oceanographic Research Institute (ORI) – PO Box 10712, Marine Parade, 4056 Durban, South Africa
2 Zoology Department, Rhodes University – African Street, Grahamstown, South Africa
3 School of Zoology, George S. Wise Faculty of Life Sciences – Tel Aviv University, Tel Aviv, Israel

The soft corals (Alcyonacea: Octocorallia) on reefs around Europa Island were surveyed in 2016. Alcyonacea were sought and collected within all the reef habitats at Europa and their relative abundance was visually recorded as being rare, occasional, common or abundant. The colonies were photographed underwater before sampling and the samples were fixed for identification and storage in the Steinhardt Museum of Natural History in Tel Aviv. Since Europa Island is remote and isolated, connectivity with other alcyonacean communities in the Mozambique Channel was investigated by particle transport modelling. This was accomplished by simulating cross-channel transport of particles between Mozambique and Madagascar, and between their shores and Europa Island, using an individual-based model (IBM) developed with Ichthyop 3.2 and driven by Regional Ocean Model System (ROMS) outputs of a South-West Indian Ocean Model (SWIM). Europa’s octocoral species richness (33 species) was rather low for such a protected, relatively pristine environment within the region. Furthermore, while certain ‘fugitive’ alcyonacean species were noticeably abundant, other soft corals were rare or absent. The Europa soft coral community is thus possibly unique in its impoverishment within the Mozambique Channel, and the underlying reasons for this may be due to relative isolation of its reef communities, as suggested by the results of SWIM analyses. These revealed that the shortest transit times of particles in the Mozambican Channel were between northern Mozambique and north-west Madagascar (3 days), and between south-west Madagascar and Europa Island (4 days). These times are well within the competence period of alcyonacean larvae. Thus, while the north-west coast of Madagascar appears well-connected with the northern Mozambique coast, the most likely source of soft coral recruits at Europa Island would be the Tulear region further south in Madagascar, which also appears to have an impoverished soft coral fauna.

Keywords: larval dispersal, particle transport modelling, oceanographic eddies, East Africa, Madagascar

∗Speaker
†Corresponding author: schleyer@ori.org.za
Environmental drivers effects on the structure and functioning of rhodolith marine habitats in Central-Eastern Atlantic Islands

Otero Ferrer Francisco *,† 1, Cosme De Esteban Marcial 1, Ribeiro Claudia 2,3, Neves Pedro 2,3, Tuya Fernando 1, Espino Fernando 1, Abreu Antonio 4, Haroun Ricardo 1

1 Biodiversity & Conservation Research Group (IU-ECOACUA) – Scientific & Technological Marine Park, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
2 Marine Plant Ecology Research Group, Centre of Marine Sciences (CCMAR) – Campus de Gambelas, 8005-139, Faro, Portugal
3 Observatório Oceânico da Madeira (OOM) – Edifício Madeira Tecnopolo, 9020-105, Funchal, Madeira, Portugal
4 Príncipe Island UNESCO Biosphere Reserve – Cidade de Santo António do Príncipe, São Tomé and Príncipe

The spatial configuration of rhodolith seabeds in oceanic islands provides an ideal system to assess whether environmental drivers regulate the structure and functioning of rhodolith seabeds across a depth gradient. Similar to altitude in terrestrial habitats, subtidal habitats experience abrupt environmental gradients (e.g. light, temperature, water motion, etc.) across narrow vertical (depth) scales. In this study, we characterized the structure of rhodolith habitats (size and shape of nodules) as well as their associated biota (fauna and flora communities) across depth scales in three Eastern Atlantic oceanic islands: Madeira (Portugal), Gran Canaria (Canary Islands, Spain), and Príncipe (Democratic Republic of São Tomé and Príncipe). A characterization program was performed in rhodolith beds at two sites and three different depths in the selected islands with subtropical waters (Gran Canaria and Madeira) and tropical waters (Príncipe). Samples were taken using SCUBA at each of the three depth strata. On each stratum, n=5 random replicates (25 x 25 cm) were taken each time, by collecting all rhodolithic nodules up to 5 cm deep. Rhodolith nodules were mainly larger at intermediate depths in Gran Canaria (25 m respect to 18 and 40 m) relative to the other depths; meanwhile sizes increased with depth in Madeira (16 m to 34 m) but decreased across bathymetrical gradient in Príncipe (5 and 10 m respect to 20 m). Most rhodoliths were quasi-spheroidal across depths in all studied islands. Still, the percentage of spheroidal rhodoliths was slightly lower at deeper strata, especially in Principe sites. The structure and functioning of the community assemblages changed consistently with bathymetry but overall with the additional substrate provided by the epiphytic associated biota (mainly macroalgae). Our data also suggested that different environmental drivers such as wave-induced turbulence (in upper layer) conditioned by geographical position of rhodolith beds in each island and irradiance attenuation (in the lower layer) can regulates the structure and functioning of rhodolith habitats across depth gradients in the studied islands.

Keywords: associated epibionts, calcareous algae, light penetration, vertical gradient, water motion

*Speaker
†Corresponding author: fran.otero@fpct.ulpgc.es
What functional space to use to characterize species functions in ecosystems?

Thomas Claverie *,† 1,2, David Roos 3, Elliott Sucré 4,5

1 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Centre Universitaire de Mayotte Route Nationale 3 - BP 53 97660 DEMBENI Mayotte, France
2 Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) – Route nationale 3, BP53 97660 Déméni, Mayotte
3 Ifremer, Délégation Océan Indien (Ifremer) – Délégation de La Réunion - Rue Jean Bertho - BP 60 - 97822 Le Port Cedex, Réunion
4 Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) – Route nationale 3, BP53 97660 Déméni, Mayotte
5 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Centre de Sète UMR MARBEC SETE - Avenue Jean Monnet - CS3017134203 SETE CEDEX, France

Understanding processes leading to changes in biological communities require accessing functioning of ecosystems. Not all species within ecosystems fulfill the same role nor do they have the same sensitivity to environmental changes, therefore species function need to be quantified. However, characterizing species functions presents a challenge because it is time consuming and complex, even if we focus only on a single trait for a single species. Moreover, the overwhelming number of species present in tropical marine ecosystems, for example, make functional consideration almost prohibitive. Here we propose to use novel measurements to study functional variation in fish assemblages. Intuitively, tall people are naturally fitter than short people to play competitive basketball; this intuition takes root in the rules of biomechanics. Such rules can be used to understand what species can do in an ecosystem. We propose to use this approach to quantify functionality within tropical fish assemblages. To this end, we measured various anatomical features, such as mandible mechanical advantage (correlated to biting force), caudal fin shape (correlated to the type of locomotion), and eye focal-number (correlated to the quality of vision). These trait metrics were subsequently used to build a functional space, which is a sort of multidimensional map of fish functions in an ecosystem. Two other classical spaces were built: one based only on fish shape and another only on ecological information, which are common metrics used in literature. Simulated fish assemblages were constructed based on real coral reef data and were gradually degraded to highlight a fishing impact (ecosystem erosion) or coral mortality for example following bleaching (shift in ecosystems). Based on the three different functional space and these simulated assemblage functional metrics were calculated to test the detectability of changes based on methodological approach. Results showed that every space was useful to detect drastic ecosystem changes (species disappearance), but only biomechanics-based functional space allowed to accurately quantify subtle changes. Such result is encouraging to improve detectability and orientation in ecosystem changes but important work remain to be done to propose fish based indexes for health monitoring of reef ecosystems.

*Speaker
†Corresponding author: tclaverie@gmail.com

sciencesconf.org/ib2019:253483
Keywords: functional space, fish assemblage, coral reef ecosystem, morphology, biomechanics
A tale of two islands: Reunion and Kauai, similar conservation challenges and solutions (Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrating predator control efforts to achieve landscape level protections for native birds & their habitats on Kauai Island, Sheri Mann</td>
<td>55</td>
</tr>
<tr>
<td>Improving effectiveness of alien plant clearing on Reunion Island through partnership, Elise Amy [et al.]</td>
<td>56</td>
</tr>
<tr>
<td>Race against time: research and conservation efforts to save Kauai’s endangered song birds, Lisa Crampton</td>
<td>57</td>
</tr>
<tr>
<td>LIFE BIODIV’OM – An ambitious program (2018 – 2023) for the conservation of a critically endangered forest bird, the Reunion Cuckooshrike, D Fouillot [et al.]</td>
<td>58</td>
</tr>
<tr>
<td>Human caused mortality crisis for the endangered seabirds of Kaua’i: quantifying the impact of power line collisions and light attraction, Marc Travers [et al.]</td>
<td>59</td>
</tr>
<tr>
<td>Unexpected advances for endangered endemic petrels conservation on Reunion Island, Patrick Pinet [et al.]</td>
<td>60</td>
</tr>
</tbody>
</table>
Integrating predator control efforts to achieve landscape level protections for native birds & their habitats on Kauai Island

Sheri Mann *† 1,2

1 State of Hawaii – Division of Forestry & Wildlife, United States
2 Division of Forestry & Wildlife (DOFAW) – 1151 Punchbowl St #325, Honolulu, HI 96813, United States

Non-native predator introductions to island ecosystems have happened around the world throughout history and there are many examples of the devastation that introduced predators can cause if left unchecked. There are also many examples of successful eradications and/or significant suppression of introduced predators. In almost all cases, it takes a tremendous amount of effort, money, coordination, persistence and partnerships to achieve eradication and significant suppression. All too often, however, efforts are disjointed and rarely is data/results from multiple efforts shared or used to teach us what we need to know in order to understand predator behaviour, so we can maximize efforts and efficiencies. Non-native predators are a constant threat to Kauai’s forest, sea, water, shore and wading bird populations. Feral cats, Black rats, Polynesian rats, Norwegian rats, Cattle Egrets, Barn owls, feral pigs, mosquitos and more predate and/or harm native birds, which reduces their survival and reproduction potential. Some feral cats also carry Toxoplasmosis, which has been found in dead marine animals near Kauai including Monk seals, dolphins and whales, and in one human baby. Rats, pigs, goats and deer also contribute to habitat destruction through seed predation, plant destruction, non-native seed distribution and creating habitat for invasive mosquitos. This presentation will describe a new approach that more closely brings resources and partnerships together to control non-native predators across Kauai’s landscapes. This will be accomplished by simplifying onerous procedures often associated with multiple funding sources and reporting, as well as capitalizing on shared goals and resources through more collaborative approaches that bolster research, technology development, access agreements, shared funding and educational outreach.

Keywords: landscape level restoration, predator control

*Speaker
†Corresponding author: Sheri.S.Mann@hawaii.gov
Improving effectiveness of alien plant clearing on Reunion Island through partnership

Elise Amy *,† 1, Isabelle Bracco 2, Pauline Fenouillas 3, Mélodie Gosset 2, Florent Ingrassia 4, Christophe Lavergne 5, Mathieu Rouget 6, Benoit Lequette 1, Frédéric Picot 5, Nila Poungavanon 7, Jean-Cyrille Notter 1, Jean-Marie Pausé 1, Nicolas Payet 8, Dominique Strasberg 9, Guillaume Payet 1, Julien Triolo 4, Hermann Thomas 1, Vincent Turquet 8

1 Parc national de La Réunion – 258 rue de la République 97431 – La Plaine des Palmistes, Réunion
2 Direction de l’Environnement de l’Aménagement et du Logement (DEAL) – 2 Rue Juliette Dodu, 97400, Saint-Denis, Réunion
3 Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) – 7 chemin de l’IRAT 97410 Saint-Pierre, Réunion
4 Office national des forêts (ONF) – Boulevard de la Providence, 97400, Saint-Denis, Réunion
5 Conservatoire Botanique National de Mascarin (CBN-CPIE Mascarin) – 2 Rue du Pere Georges, 97436, St-Leu, Réunion
6 CIRAD UMR Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT) – 7 chemin de l’IRAT, 97410 SAINT PIERRE, Réunion
7 Groupement pour la Conservation de l’Environnement et l’Insertion Professionnelle (GCEIP) – 54 bis Route de la Ligne Paradis, 97410, Saint Pierre, Réunion
8 Département de La Réunion – 2 rue de la source, 97488, Saint-Denis, Réunion
9 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion

Biological invasions threaten biodiversity worldwide, especially on tropical islands such as Reunion Island. Here we present the results of a collaborative effort to map biodiversity priorities and to prioritise alien plant clearing. We first combined all existing data on habitats, threatened and endemic species and the distribution of alien plant species. Using expert-knowledge where necessary, we provide the first map of invasion level for the whole island. We developed a decision-making process using Zonation, a conservation-planning tool, to identify biodiversity conservation priorities. Conservation priority areas were selected to maximise biodiversity levels in areas lightly invaded. We then included criteria to identify priority areas for alien plant clearing based on clearing costs, accessibility and history of previous clearing programmes. Almost 40% of the remaining natural habitats on Reunion Island are moderately to heavily invaded. We identify 58,500 ha as conservation priority areas of which 30% are considered to be not invaded at all. We discuss how this will impact future alien plant clearing programmes and propose the basis for an integrated clearing and restoration plan for Reunion Island.

Keywords: Alien species, conservation, planning tool, partnership

*Speaker
†Corresponding author: elise.amy@reunion-parcnational.fr
Race against time: research and conservation efforts to save Kauai’s endangered song birds

Lisa Crampton * 1

1 Division of Forestry and Wildlife (DOFAW) – Hanapepe, HI, United States

The Hawaiian Islands are facing an extinction crisis. On Kauai Island, five songbird species disappeared in the last 50 years. Three critically endangered species number Culex mosquitoes, an important disease vector. Thus, we used LiDAR (Light Detection And Ranging) imagery and automated recording devices (ARD) to produce habitat suitability maps to spatially target conservation actions on a landscape scale on Kauai. Using detections and nest locations of endangered Akikiki and Akekee from 2012-2017, we identified LiDAR-derived attributes associated with presence and nest sites. Both species nested in areas where mean canopy height was ≈10 m. Presence was most strongly associated with canopy height, elevation, and slope. To groundtruth habitat maps, in 2017-8, we deployed ARDs on 12 transects for 2-4 week periods and conducted Variable Circular Point Counts and area surveys to determine distribution and densities of forest birds and find nests. Using these approaches, we located unknown concentrations of all three endangered forest bird species of Kauai that we can target for protection. Simultaneously, we founded conservation breeding populations of Akikiki and Akekee by collecting eggs and transferring them to breeding facilities. Akikiki currently number 46 individuals in captivity and have started breeding; Akekee number 10 birds. We have deployed 425 self-resetting rat traps at two sites to protect crucial nesting habitat from predation, resulting in a 4-fold decrease in rat abundance. Partner agencies have fenced hundreds of hectares of habitat to avert ungulate damage. Furthermore, we are investigating Culex distribution and demography at two sites. As we find Culex larvae, we control them locally with Bti; more importantly, distributional and demographic data will inform landscape control using sterile Culex in the near future. Collectively these actions hold the promise of saving Kauai’s birds from extinction. We discuss lessons learned that may be valuable to those faced with similar situations.

Keywords: endangered, habitat suitability modeling, Hawaii, honeycreeper, predator control

*Speaker
LIFE BIODIV’OM – An ambitious program (2018 – 2023) for the conservation of a critically endangered forest bird, the Reunion Cuckooshrike

D Fouillot *, J-F Centon †, E Duchemann †, J Martinez †, E. Solier †, C Yeung Shi Chung †

1 Société d’Etudes Ornithologiques de La Réunion (SEOR) – 13, ruelle des Orchidées, 97440 SAINT ANDRE, Réunion

The Reunion Cuckooshrike or Tuit-tuit (Lalage newtoni) is an endangered species whose global population is estimated at only 40 breeding pairs (SEOR, 2017). Between 1974 and 2005, monitoring of their numbers showed a drop of almost 25% in the number of singing males on the Roche Écrite massif. In 2006, bird counts carried out by the Réunion Society for Ornithological Studies (SEOR) revealed that the species was on the brink of extinction, with only 11 pairs dispatched in an area of less than 10 km². In 2004, following several predation tests, the Réunion Society for Ornithological Studies (SEOR) identified the rat (Rattus rattus) as being the predator with the highest impact on this species. Since then, rat control campaigns have been implemented to limit the impact of the predator during the breeding season. Since 2004, SEOR, Réunion National Park, and the French National Forestry Agency (ONF) have been testing a streamlined method using ”Mini Philproof” rat bait stations and rat bait scattered on both sides of the transects using slingshots. Every year, the population and reproductive success of this species are monitored throughout its distribution range, which allows us to check the efficiency of the different rat control methods used over the past 15 years. Rat control remains the key action to guarantee the future of this species and the new challenge is to continue this operation during the next decade. In 2018, an ambitious and multi-faceted program, called LIFE BIODIV’OM, was initiated to engage massive conservation actions with a translocation project on this critically endangered species and a large program of rat/cat/Red-Whiskered bulbul control with local volunteer mobilization over 10 years time and covering 1500 ha.

Keywords: Conservation, Reunion Cuckooshrike, predators control

*Speaker
†Corresponding author: fouillotd@seor.fr
Human caused mortality crisis for the endangered seabirds of Kaua’i: quantifying the impact of power line collisions and light attraction

Marc Travers *,† 1, Andre Raine 1, Theresa Geelhoed 1, Matthew Mckown 2, M.tim Tinker 3

1 Kauai Endangered Seabird Recovery Project-University of Hawaii (KESRP/PCSU) – 3900 Hanapepe Rd, Hanapepe Hi, United States
2 Conservation Metrics Inc. (CMI) – 145 McAllister Way, Santa Cruz, CA 95060, United States
3 Nhya Ecological Research – Head Of St Margarets Bay, Nova Scotia, Canada

On Kaua’i, both the Newell’s Shearwater and Hawaiian Petrel are vulnerable to power line collisions, because they make frequent nocturnal flights crossing power lines, and light attraction which grounds fledglings during their first flight to sea. To determine the impact of power line collisions, we have conducted 6,091 hours of observations from 2012-2018 quantifying seabird power line collisions, flight height, and behavior at power lines. We also developed a novel monitoring tool - automated acoustic surveys of avian power line collisions - which has dramatically increased the temporal and spatial scale of monitoring (276,879.5 total hours), overcoming many of the biases inherent in traditional bird carcass counts. Based on our observations, we report that 9.3-15.3% of seabird power line collisions result in an immediately grounded bird and use this as a proxy for minimum mortality. Automated acoustic surveys at a sample of sites along the entire power line grid detected a total of 8,715 collisions over six years. We developed a statistical model to predict collision risks across the island-wide transmission wire grid and estimated a total of 10,552 collisions per year, with a minimum mortality of between 981-1,614 endangered seabirds annually. We validated our model estimates both statistically and with orthogonal data sets. The acoustic results are fully supported by both downed bird results and a separate mechanistic model utilizing observations of seabird collisions and passage rates at power lines. The observer model fit seabird collisions to observational data, incorporating powerline characteristics as well as spatial, temporal, and environmental covariates to assess risk. These results show that power lines collisions are the largest documented source of mortality for two endangered species shown to have undergone a large-scale population declines on Kaua’i. To determine the impact of light attraction, we conducted 7,500 km of surveys looking for grounded juvenile birds. We found a mortality rate of 35-43% for grounded birds, and discovered that dead birds were rarely reported by the public. Given that Kauai residents have found > 30,000 live birds since 1979, we estimate that unreported mortality was between 16,100-22,600 seabirds over the same time period.

Keywords: light attraction, power line collisions, seabird mortality
Unexpected advances for endangered endemic petrels conservation on Reunion Island

Patrick Pinet *, Jerome Dubos 2, Martin Rietzmuller 3, Christophe Caumes 4, Yahaia Soulaimana Mattoir 3, Camille Payet 1, Anne Lefeuvre 1, Patxi Souharce 3, Jordan Baszile 3, Laurence Humeau 6, Audrey Jaeger 2

1 Parc national de La Réunion, Life+ Pétrels – 258 Rue de la République, 97431 Plaine des Palmistes, Réunion
2 UMR ENTROPIE. Université de La Réunion – 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, Réunion
3 Société d’Études Ornithologiques de La Réunion (SEOR) – 13, ruelle des Orchidées Cambuston, 97440 Saint André, Réunion
4 Parc national de La Réunion (PNRun) – 258 Rue de la République, 97431 Plaine des Palmistes, Réunion
5 Office National de la Chasse et de la Faune Sauvage (ONCFS) – 12 allée de la forêt, Parc de la Providence, 97400 SAINT DENIS, Réunion Island, France, Réunion
6 UMR PVBMT. Université De La Réunion – 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, Réunion

Reunion Island (western Indian Ocean) is one of the islands in the world holding two endemic species of petrels, the Barau’s Petrel (Pterodroma baraui), and the Mascarene Petrel (Pseudobulweria aterrima), both of which are poorly known and endangered. The principal threats to both species are introduced mammalian predators (rats and feral cats) and impacts of light pollution. The Mascarene Petrel has a very restricted population (between 45 and 400 pairs, with an average estimate of 250 pairs). This species is the most endangered endemic seabird of Reunion Island, and one of the rarest seabirds in the world. Remarkably, the breeding colonies for this critically endangered species remained unknown until late 2016, just over two years ago. How could breeding colonies of a species of global conservation concern be unknown for so long? It is due to a combination of factors, including a very small population size, the fact that Mascarene Petrels nest in underground burrows and only visit their colonies at night, and the incredibly rugged, steep, mountainous and heavily vegetated interior of the island where the petrels nest. Since 2015, an ambitious and multi-faceted program, called LIFE+ PETRELS, was initiated to engage massive research and conservation actions. Indeed, in less than 3 years, 2 breeding colonies of Mascarene Petrels were discovered, and more than 45 nests were monitored with 70 individuals, allowing the team to study biology and ecology of this elusive species. In this talk, we propose an overview of all the incredible results obtained within the LIFE+ PETRELS project and share innovative strategies and creative techniques, both on the breeding colonies and with local human communities on Reunion, to address a multitude of threats to the long-term conservation of these two single-island endemic species.

Keywords: Mascarene Petrel, conservation, LIFE+, Réunion Island

*Speaker
Evolutionary trends in island plants: is everything lost on islands? (Symp.)

Contents

The loss of size diversity in island plants, Kevin Burns 62
Loss of defenses on island plants: from theory to evidence, Carlos Garcia-Verdugo [et al.] ... 63
Are genetic diversity patterns cogent with a generalized loss of dispersal in island plants? Insights from Macaronesia, Juli Caujapé-Castells [et al.] 64
Loss of pollination syndromes after island colonization, T Pailler 65
What do wind-dispersed species tell us about loss of dispersal potential on islands?, Mario Mairal ... 66
The loss of size diversity in island plants

Kevin Burns *† 1

1 School of Biological Sciences – Victoria University of Wellington, PO Box 600, New Zealand

Animals that evolve on isolated islands break all the rules. Speedy, nervous, little birds repeatedly become plump, tame and flightless. This symposium asks whether plants evolve similar patterns in dispersal ability, size and defence on islands. It also asks whether they display additional evolutionary trends on islands, including differences in gender and floral biology. In the first part of my presentation, I outline the types of repeated patterns in evolution we might expect to observe in island plants, many of which will be considered in detail by the symposium speakers. Next, I test for the loss of size diversity in island plants using a dataset from islands in the Southwest Pacific. I specifically test for evidence of the ‘island rule’ in leaf area, plant stature and seed size. Results showed that taller plants with bigger leaves repeatedly evolved to become smaller on islands, while shorter plants with smaller leaves evolved to become larger. Therefore, leaf area and plant stature obeyed the ‘island rule’ and exhibit a loss of size diversity. On the other hand, seeds regularly increased in size on islands, regardless of their size on the mainland, providing a striking example of convergent evolution. By establishing what is currently known about repeated patterns in the evolution of island plants, including the loss of size diversity, this symposium provides a first step towards understanding repeated patterns in the evolution of island plants.

Keywords: evolution, island syndrome, leaves, plant, seeds, stature

*Speaker
†Corresponding author: kevin.burns@vuw.ac.nz
Loss of defenses on island plants: from theory to evidence

Carlos Garcia-Verdugo * 1, Xoaquín Moreira 2

1 Universitat de les Illes Balears – Institut Mediterrani d’Estudis Avançats (UIB – IMEDEA) – Ctra. de Valldemossa, km 7.5 - 07120 Palma de Mallorca, Spain
2 Misión Biológica de Galicia (MBG-CSIC) – A Carballeira, 8, 36143 Salcedo, Pontevedra, Spain

Many types of herbivores are rare or absent on islands. It has therefore been hypothesized that insular plants are more poorly defended than their mainland counterparts. However, this hypothesis has been questioned by recent work reporting no evidence of such trends or even increased chemical defense in island systems. In this talk we: (i) synthesize potential sources of inconsistency in the study of insularity effects on plant-herbivore interactions; and (ii) outline experimental approaches that may help us to address major limitations in island-mainland comparisons of plant defense. To this end, we emphasize the cornerstone idea that plant defense is a complex trait stemming from different types of phenotypic responses, including those developed after herbivore damage (i.e. induced defenses) or those mediated by indirect associations with third trophic levels (i.e. indirect defenses). We also highlight the role of abiotic (e.g. climatic) factors, which has been largely neglected in studies of insular plant defense despite marked differences in habitat conditions between source (continental) and island regions. Finally, we identify the lack of a comprehensive spatio-temporal framework as a fundamental drawback for data interpretation in island evolutionary studies on plant defensive traits. In summary, island-mainland systems provide a unique experimental setting for evolutionary studies on plant defense, but our analyses and conclusions may benefit from considering key ecological and phylogeographical factors related to plant-herbivore interactions.

Keywords: chemical responses, island vs. mainland comparisons, island syndrome, phylogeography, plant defence, plant–animal interactions

*Speaker
Are genetic diversity patterns cogent with a generalized loss of dispersal in island plants? Insights from Macaronesia

Juli Caujapé-Castells *† 1, Carlos García-Verdugo 2, Harald Meimberg 3, Manuel Curto 3

1 Jardín Botánico Canario “Viera y Clavijo”-Unidad Asociada al CSIC, Cabildo de Gran Canaria – Camino al Palmeral 15 Tafira Alta, Spain
2 Departamento de Biología de Organismos y Sistemas, Jardín Botánico Atlántico – Universidad de Oviedo (Spain) – Campus del Cristo B de la Universidad de Oviedo., Spain
3 Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (Austria) – University of Natural Resources and Life Sciences (Austria), Austria

Classical island biodiversity theory predicts that insular populations generally have limited stocks of genetic diversity. However, notable exceptions to this hypothesis started to appear since the seminal applications of molecular techniques to the investigation of island endemics, and have experienced an upward surge in recent times due to both the thorough consideration of diversification processes in widespread insular lineages, and the inception of new generation genetic analysis techniques. At odds with the classical tenets of island biogeographical theory, abundant evidence based on consistent populational and genetic sampling in multi-island oceanic archipelagoes is revealing complex diversification landscapes where plant endemics often display great genetic diversity levels, directly related to the maintenance of high dispersability capabilities. In tight connection, phylogeographical analyses are also describing very dynamic scenarios of frequent inter- and intra-island colonization, and complex patterns of hybridization that underlie the origins of some conspicuous island radiations, and often reveal the existence of (i) ongoing speciation processes at local spatial scales (‘islands within islands’), and (ii) glaring incongruences with the currently accepted taxonomy. The talk will assess genetic data to showcase discrepancies between the classical island genetic diversity theory and the emerging picture, emphasizing the ensuing conservation implications. Our main focus will be the Canarian archipelago, where the sharply different ontogenetic stages of the different islands, their climatic stability during Quaternary glacial cycles, and their great closeness to the mainland have likely promoted a much higher incidence of processes that conflict with some important tenets of the island syndrome.

Keywords: genetic diversity, Canary Islands, widespread lineages, NGS, island syndrome

*Speaker
†Corresponding author: julicaujape@gmail.com
Loss of pollination syndromes after island colonization

T Pailler * 1

1 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion

In his renowned book "On the origin of species", Charles Darwin predicted the fantastic co-evolution of the plant-pollinator relationship that would have taken place between Angraecoides orchids and a giant hawkmoth (sphingid) on Madagascar. Since then, the study of pollination biology has been a major theme in the Madagascan region. This is a hotspot of biodiversity composed by the main island of Madagascar and surrounding archipelagoes (Comoros, Seychelles and Mascarene). Biogeographic evidence suggests that most of the Mascarene island colonists have a Madagascan origin, which imposes a 800 km sea barrier to dispersal. Such a filter is reflected by the underrepresentation of animal elements when compared to the source area, with insect pollinators being no exception. One of the main objectives of our research over the last 10 years has been to answer the following question: how did the angrecoids-sphingid relationships evolve after colonization of the Mascarene archipelagoes? The main conclusion is that a great variability has been generated during the evolution of this syndrome under island isolation. In some cases, the pollination system is maintained, but in other cases it is lost in favor of selfing, finality pollinator shift occurs in lineage and gave raise to new pollinator syndromes.

Keywords: Mascarene evolution, orchids, pollination, sphingid

*Speaker
What do wind-dispersed species tell us about loss of dispersal potential on islands?

Mario Mairal * 1

1 Stellenbosch University (SU) – Stellenbosch UniversityPrivate Bag X1, Matieland, 7602, Stellenbosch, South Africa, South Africa

Recent island colonists are expected to represent the fraction of the mainland source population with greater dispersal ability. After colonization, the loss of dispersal on islands hypothesis (LDIH) predicts that island populations will experience a rapid reduction in dispersal ability due to negative selective pressures imposed by loss of propagules at sea. Several classic and contemporary works have supported these predictions, with study cases focusing mainly on plants and flightless animals with restricted endemic island or island-like distributions. Less effort, however, has been made to address these predictions using island endemic lineages that have successfully colonized multiple islands. Within these lineages, anemochory provides a prime study system because it allows for testing of the evolution of dispersability from a mechanistic point of view, e.g. based on morphological features of fruits and seeds. Additionally, providing a spatio-temporal framework may prove useful for testing how island population age relates to evolutionary trends in dispersal-related traits. Thus, combining phenotypic plant traits and phylogeographic analyses, I will present several studies that have failed to find evidence of dispersability loss in different island lineages. I will discuss how these results could be potentially attributed to factors such as habitat availability, colonization age or selection for seed size increase on islands. Additionally, I will show examples where dispersal traits are poorly conserved phylogenetically, and that there is a need to test both phylogenetic signal and the level of niche conservatism to infer the evolution of dispersability. Altogether, these studies failed to support the central predictions of the LDIH, which calls for a redefinition of the factors driving the evolution of wind-dispersal traits on islands.

Keywords: plant evolution, dispersability, phenotypic plant traits, phylogeography, diaspores

*Speaker
Synthesizing island biodiversity theory for community-wide genetic data (Symp.)

Contents

Origins of diversity on islands: the nexus of ecology and evolution in community assembly, Rosemary Gillespie [et al.] ... 68

Island biogeography and the distribution of genetic variation in ecological communities, Isaac Overcast ... 69

Assessing the drivers of biodiversity patterns using environmental DNA data: macroecology and macroevolution of the oceanic plankton, Hélène Morlon [et al.] 70

Diversifying as a holobiont: macroevolutionary patterns of microbiota in an island archipelago, Benoît Perez-Lamarque [et al.] .. 71

Whole-community assembly from metabarcoding data reveals the structure of the soil mesofauna at multiple genetic levels and spatial scales, Paula Arribas [et al.] 72
Origins of diversity on islands: the nexus of ecology and evolution in community assembly

Rosemary Gillespie *† 1, Henrik Krehenwinkel 2, Andrew Rominger 3

1 University of California [Berkeley] – Berkeley, CA, United States
2 Trier University – Universität Trier, Universitätsring 15, D-54296 Trier, Germany
3 Santa Fe Institute – 1399 Hyde Park Rd, Santa Fe, NM 87501, USA, United States

Research on the dynamics of biodiversity has progressed tremendously over recent years, though in two separate directions – ecological, to determine change over space at a given time, and evolutionary, to understand change through time. Integration of these approaches has remained elusive, due both to the difficulty of dealing with more than a few taxonomic groups at a time within a given community, as well as the inability to measure ecological attributes of communities over extended evolutionary time. However, we now have ways to address these issues using archipelagoes with a known geological chronology that provide an opportunity to study ecological interactions over evolutionary time. Within this framework, technologies of next-generation sequencing are allowing estimates of abundance and diversity of entire communities of organisms, while theoretical developments can provide constructs for interpretation of patterns of change through time. We use metabarcoding data from entire arthropod communities generated across sites of different geological age across the Hawaiian Island chronosequence. The data provide information on diversity, abundance, and habitat associations. We examine these patterns across the islands to assess the dynamics of community assembly over time. Results indicate that species abundance distributions deviate from expectations at different stages (or ages) of community development; likewise, network structure over the island chronosequence changes in a fairly predictable manner. Within the theoretical construct, the data allow us to understand the dynamics shaping community structure over extended time and provide insights into how communities might be expected to accommodate changes in the future as island communities are confronted with biotic homogenization. The results have key implications for assessment of the status of biological communities and approaches for conservation and restoration.

Keywords: arthropods, evolution, Hawaiian islands

*Speaker
†Corresponding author: gillespie@berkeley.edu
Island biogeography and the distribution of genetic variation in ecological communities

Isaac Overcast * 1

1 Graduate Center of the City University of New York (GC CUNY) – 365 5th Ave New York, NY 10016, United States

Biodiversity in ecological communities can accumulate via colonization from a regional source pool, in situ speciation, or some combination of these. Reconciling the relative importance of these processes is hindered partially because the two extremes are currently the domain of different fields of study. In situ speciation is commonly studied through the lens of phylogenetics and trait evolution, whereas communities assembled via colonization are the focus of neutral and non-neutral models of community ecology. Population genetic variation at the community scale has been rarely studied, and could provide a complementary axis of information to aid in disentangling processes shaping ecological communities. To this end I introduce a mechanistic model of community assembly that roots itself in classic island biogeography theory (MacArthur and Wilson 1967; Hubbell 2001) to make historically dynamic joint predictions of observed data along three axes that unify macro-ecology, phylogeography, and macro-evolution: species richness and abundances; genetic diversities and divergences; and trait evolution within the context of phylogenetic diversification. Using simulations and empirical data I demonstrate that each data axis captures information at different timescales of assembly, and that combining all these axes results in much finer resolution inference. Finally, I demonstrate a simulation-based inferential framework (massive eco-evolutionary synthesis simulations; MESS), which combines ABC and supervised machine learning to test competing models of community assembly and evolution (niche vs neutral and evolved vs assembled) and to estimate an array of model parameters relevant to a complex history of island assembly and evolution.

Keywords: Community genetic diversity, Species abundance distributions, Island biogeography, Ecological neutral theory, Non, equilibrium dynamics

*Speaker
Assessing the drivers of biodiversity patterns using environmental DNA data: macroecology and macroevolution of the oceanic plankton

Hélène Morlon 1†, Guilhem Sommeri-Klein 2, Eric Lewitus 2

1 Institut de biologie de l’ENS Paris (UMR 8197/1024) (IBENS) – École normale supérieure - Paris, Centre National de la Recherche Scientifique : U1024 – 46, Rue d’Ulm, 75005 Paris, France
2 Institut de biologie de l’ENS Paris (UMR 8197/1024) (IBENS) – École normale supérieure - Paris, Centre National de la Recherche Scientifique : U1024 – 46, Rue d’Ulm, 75005 Paris, France

Recent oceanic surveys have collected genetic datasets that are at the same time community-wide, i.e. representing all species from a community assemblage, and global, i.e. covering a large part of the total diversity of clades. These data offer an unprecedented opportunity to assess the ecological and evolutionary drivers of biodiversity patterns, from local communities to the global ocean. I will present two studies based on data from the TARA Ocean Global Expedition. The first focuses on the drivers of diversification of the oceanic plankton; the second focuses on the drivers of community assembly. These studies will illustrate recent quantitative tools for studying diversification and community assembly. Next, I will discuss future avenues for integrating these quantitative tools for a more inclusive understanding of biodiversity patterns.

Keywords: diversity, oceanic plankton, distribution, NGS, environmental DNA

*Speaker
†Corresponding author: morlon@biologie.ens.fr
Diversifying as a holobiont: macroevolutionary patterns of microbiota in an island archipelago

Benoît Perez-Lamarque *, 1,2, Henrik Krehenwinkel 3, Rosemary Gillespie 4, Hélène Morlon 5

1 Institut de biologie de l’ENS (IBENS) – CNRS : UMR8197, Ecole Normale Supérieure de Paris - ENS Paris – Paris, France
2 Institut de Système, Evolution, Biodiversité UMR 7205 (ISYEB) – Centre National de la Recherche Scientifique, Ecole Pratique des Hautes Études, Sorbonne Université, Museum National d’Histoire Naturelle – 45 rue Buffon, 75005 Paris, France, France
3 Universität Trier – Universitätsring 15D-54296 Trier, Germany
4 Environmental Science, Policy & Management, University of California – Berkeley, United States
5 Institut de biologie de l’ENS Paris (IBENS) – CNRS : UMR8197, Ecole Normale Supérieure de Paris - ENS Paris – Paris, France

Plants and animals from island archipelagos often display a specific phylogeographic pattern, called the progression rule: their current biogeography along the island chronosequence reflects their past evolutionary history of repeated migration events followed by allopatric speciation and radiation. While the progression rule has been well documented in macroorganisms, whether the microorganisms associated with these hosts – their microbiota – also follow the progression rule remains unclear. In addition to dispersal ability and mode of diversification, the biogeography of the microbiota on island archipelagos will depend on mode of transmission, i.e. whether the microbes are independently acquired from the environment during the life of their hosts (i.e. environmental acquisition), transmitted across populations or species by host-switch (i.e. horizontal transmission), or transmitted across generations associated with their hosts (i.e. vertical transmission). Here, we aim to document and explain phylogeographic patterns of the arthropod host associated microbiota on island archipelagos. First, we build upon a model that we recently developed for characterizing symbiont inheritance during host-microbiota evolution. In this model, microbial sequences evolve on a fixed host phylogeny; they are vertically transmitted and can experience horizontal host-switches. Adjusting this model to microbial sequence alignments mapped to host phylogenies allows studying microbial modes of inheritance. We further develop this model in order to account for the geographical distribution of host species on islands in the process of vertical transmission and host-switches. Second, we analyze gut microbiota data of Ariamnes spiders. These spiders experienced a recent adaptive radiation along the Hawaiian archipelago. We describe the microbiota’s phylogeographic pattern, assess whether it follows the progression rule, and attempt to explain the phylogeographic pattern by analyzing modes of inheritance using our model. Finally, we discuss how modes of inheritance of the microbiota could impact host evolution in the context of island archipelagos.

Keywords: biogeography, microbiota, diversification, island archipelagos, mode of transmission
Whole-community assembly from metabarcoding data reveals the structure of the soil mesofauna at multiple genetic levels and spatial scales

Paula Arribas* 1, Alfried P. Vogler 2, Brent C. Emerson 1, Carmelo Andújar † 1

1 Instituto de Productos Naturales y Agrobiología-CSIC (IPNA-CSIC) – S.C. La Laguna, S.C. Tenerife, Spain
2 The Natural History Museum [London] (NHM) – London, United Kingdom

Soils are among the most diverse habitats on Earth, but at the same time they are the most poorly studied terrestrial ecosystems. Our understanding is extremely limited for the arthropod mesofauna, because conventional morphological and molecular approaches are in many cases insufficient for the characterisation of their complex communities. The implementation of high-throughput sequencing for metabarcoding now offers unprecedented opportunity to overcome past constraints to characterise and understand soil biodiversity, but its application is still very limited and mostly constrained to the OTU (species) level. Here we take advantage of newly developed protocols for sample-processing and bioinformatics to generate community-wide genetic datasets for soil mesofauna, to explore whole-community assembly of belowground biodiversity, both at and below the species level. Our analyses across continental (western Europe) and island (Canary Islands) settings uncover a strong geographical structuring of soil communities at multiple genetic levels, and reveal a fractal pattern in soil community assembly. This aligns with a predominance of neutral but limited dispersal driving community assembly of soil mesofauna from landscape to broad geographical scales. Our results cast light on the open question of whether the distribution of above- and belowground biodiversity is governed by the same laws, and provide an empirical and analytical benchmark to identify the generalities and singularities of continental and island biodiversity dynamics.

Keywords: community assembly, metabarcoding, soil mesofauna, neutral processes

*Corresponding author: pauarribas@ipna.csic.es
†Speaker
Plant conservation on oceanic islands: scientific needs and examples of good practice to solve imminent challenges (Symp.)

Contents

Identifying a network of Tropical Important Plant Areas (TIPAs) in the British Virgin Islands, Michele Dani Sanchez [et al.] ... 74

The transition to selfing and its implications for the conservation of small insular plant populations: a case study from Tolpis succulenta in the Azores, D. J. Crawford [et al.] 75

Conserving the threatened Puerto Rican endemic plant, Varronia bellonis (Cordiaceae), Martin A. Hamilton [et al.] ... 76

The conservation of New Caledonian rare and endangered species threatened by mining activities, the need of a global approach for a big challenge, Bruno Fogliani [et al.] ... 77

Ex situ seed conservation of Hawaiian ‘exceptional species’ as a case study for tropical island floras, Marian M. Chau [et al.] ... 78

The IUCN Plant specialist group for Macaronesia: Using transnational cooperation and updated scientific data to better understand and mitigate the threats to oceanic island floras., Monica Moura [et al.] ... 79

The IUCN Seed Conservation Specialist Group: Connecting experts, identifying gaps, and developing best practices, Uromi M. Goodale [et al.] 80

Red Lists and open data: how the New Caledonia Plant Red List Authority has brought together environment professionals, scientists and amateur experts, Shankar Meyer [et al.] ... 81

Strategies for conservation of endemic species in protected areas of Cabo Verde islands, Herculano Andrade Dinis [et al.] ... 82

Conservation of crop wild relatives of Macaronesian Islands: current status and outlook, Maria Romeiras [et al.] ... 83
Identifying a network of Tropical Important Plant Areas (TIPAs) in the British Virgin Islands

Michele Dani Sanchez *† 1, Colin Clubbe 1, Sara Barrios 1, Thomas Heller 1, Lynda Varlack 2, Nancy Woodfield Pascoe 2, Natasha Harrigan 2, Keith Grant 2, Tessa Smith 3, Joseph Smith Abbott 3, Martin A. Hamilton 1

1 Royal Botanic Gardens, Kew – The Herbarium, Kew Green, Richmond, Surrey TW9 3AE, United Kingdom
2 National Parks Trust of the Virgin Islands (NPTVI) – #16 Mill Mall, 2nd Floor P.O. Box 860 Road Town Tortola VG1110, British Virgin Islands
3 BVI Ministry of Natural Resources and Labour – 33 Admin Drive Central Administration Complex Road Town, Tortola VG1110, British Virgin Islands

The British Virgin Islands (BVI), a UK Overseas Territory in the Caribbean Sea, have more than 50 islands, keys and rocks. The territory is part of the Puerto Rican Bank Floristic Province that has an endemism of 13.6% with 292 endemic taxa, four of which are endemic to the BVI. The National Parks Trust of the Virgin Islands and the Royal Botanic Gardens, Kew, along with local and international partners, have been researching and working to conserve the plants of the BVI for over 20 years. The botanical expertise, species and habitat management skills and robust datasets on the local flora and terrestrial habitats generated during this collaboration created the opportunity for the group to embark on a three-year project to identify the BVI’s Tropical Important Plant Areas (TIPAs). Baseline plant data and gap analysis identified priority species and islands that required further surveys. After completion of fieldwork and data collation, a total of 3688 geo-referenced high-resolution (+/-10m) records from herbarium specimens and field observations of the priority plant species were used to: (a) prepare and submit to the IUCN Red List of Threatened Species a total of 36 plant species assessments, including 25 globally threatened species; (b) identify highly restricted and range restricted endemics; (c) consolidate and agree a national list of 35 species of national high conservation importance. Analyses of land cover data identified five nationally threatened habitats in the BVI, each covering < 10% of the total national land area and in decline. Species and habitat data imported into a GIS were used by the BVI TIPAs national team during a series of workshops to apply the TIPAs criteria and identify a network of 18 TIPAs across 13 islands of the BVI archipelago. This recognition of BVI’s important sites for botanical richness and threatened plant species and habitats, applying international standards to robust data, is an important tool for long-term species and habitat management to ensure the future of the BVI’s unique flora.

Keywords: threatened species, plant diversity, threatened habitats, Caribbean, conservation

*Speaker
†Corresponding author: m.sanchez@kew.org
The transition to selfing and its implications for the conservation of small insular plant populations: a case study from Tolpis succulenta in the Azores

D. J. Crawford*, 1, M. Moura† 2, L. Borges Silva 2, M. E. Mort 3, G. White 4, B. Kerbs 3, H. Schaefer 5, J. K. Kelly 3

1 Department of Ecology & Evolutionary Biology, and the Biodiversity Institute, University of Kansas – Lawrence, KS, 66045-7534, USA, United States
2 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores – Rua da Mãe de Deus 13A, 9501-801 Ponta Delgada, Açores, Portugal, Portugal
3 Department of Ecology & Evolutionary Biology, University of Kansas – Lawrence, KS, 66045-7534, USA, United States
4 Evergreen State College – Olympia, WA 98505, USA, United States
5 Department of Ecology & Ecosystem Management, Plant Biodiversity Research, Technical University of Munich – Emil-Ramann-Str. 2, 85354 Freising, Germany, Germany

Baker’s law posits that self-compatible (SC) plant colonizers of oceanic islands should be more frequent than self-incompatible (SI) colonists because sexually-reproducing populations can originate from a single SC colonizer whereas two or more SI compatible mates are necessary. SC is over represented in insular Asteraceae compared to mainland members; nevertheless, many speciose Asteraceae lineages originated from SI or pseudo-self-compatible (PSC, can set some self-seed) colonists. Members of the composite genus Tolpis endemic/native to the Macaronesian archipelagos, save one Canarian species, consist of SI/PSC species and are exceptions to Baker’s law. Interestingly, the in situ transition to selfing in the dynamic landscapes of oceanic archipelagos has rarely been reported for native/endemic insular composites. The purpose of this study was to examine the breeding system of two small populations of Tolpis succulenta on Graciosa Island in the Azores, where the species is exceedingly rare. Progeny of maternal plants from the two populations exhibit high self-seed set. Segregation for SI/SC in synthetic F2 hybrids between SC Graciosa plants and SI Tolpis succulenta from the Azores showed one major factor associated with breeding system, with SC recessive to SI. Phylogenetic analyses of genomic markers resolved SC Tolpis succulenta as sister to SI Tolpis succulenta in the Azores, suggesting that SC originated from SI Tolpis succulenta. Plants on Graciosa are morphologically distinct from SI Tolpis succulenta on other Azorean islands, with smaller capitula and style branches, and lower pollen-ovule ratios. The likely major factor favoring selfing in these small populations is the paucity of compatible mates both during and subsequent to establishment on Graciosa. Lack of pollinators was ostensibly not a large factor because plants can set seed in the absence of floral visitors. The ability to set self-seed without pollinators has positive conservation implications for Tolpis succulenta on Graciosa; the greatest threats to the populations are loss of habitat and invasive plants. Evidence for formal taxonomic recognition of populations on Graciosa include phenetic divergence, occurrence as distinct clades in the phylogeny, and the likelihood that they are genetically isolated by the SC breeding system and spatial/geographic divergence.

Keywords: Breeding system, conservation, Tolpis, Azores

*Corresponding author: dcrawfor@ku.edu
†Speaker
Conserving the threatened Puerto Rican endemic plant, *Varronia bellonis* (Cordiaceae)

Martin A. Hamilton 1, Juan Viruel 1, Anthony Maldonado 1, Rocio Perez-Barrales 2, Alberto Puente 3, Jeanine Velez 3, Barbara Sanchez 3, Ed Lopez 3, Jose Sustache 4, Jesus Rios 5, Omar Monsegur 5

1 Royal Botanic Gardens, Kew (Kew) – Surrey, United Kingdom
2 University of Portsmouth – Portsmouth, United Kingdom
3 University of Puerto Rico, Mayagüez Campus – Mayagüez, Puerto Rico
4 Department of Natural and Environmental Resources (DNER) – San Juan, Puerto Rico
5 US Fish and Wildlife Service, Caribbean Ecological Services Field Office (CESFO) – Cabo Rojo, Puerto Rico

Varronia bellonis (Cordiaceae) is a threatened plant species with a very restricted distribution on the island of Puerto Rico. Prior to our work, little was known about the status of natural populations, the species phenology, pollinators, seed dispersal or its habitat requirements with no investigations into its genetics or pollination syndrome. An international group is working to resolve the species taxonomic placement and develop phylogeographic and population genetic studies to develop management strategies for the species recovery. Before this study, around 40 collections lodged in herbaria since the species discovery in 1884 had wanting information about collecting locality and phenology. The IUCN Red List assessment for the species in 2014 as Critically Endangered estimated that there were only 47 mature individuals remaining in the wild based on available literature. Desk-based studies pulled together available resources into a GIS, including all available occurrence records, land cover maps from cloud-free Landsat imagery and surface geology data from the US Geological Survey. Field-based activities have been undertaken in and around the three historic locations known to have supported populations, including presence/absence survey, sampling for genetic analyses, camera trapping for plant-animal interactions and collection of habitat, phenological and morphological data. We found extant populations in and around the Maricao, Rio Abajo and Susúa State Forests and have documented several new individuals and previously unknown locations in Arecibo, San German and Utuado. The current estimate is circa 300 mature individuals. A strong correlation between the species recorded locations and specific geology and land cover types was observed suggesting the importance of habitat preference. We have secured ex-situ collections with seed stored in the seed bank at the University of Puerto Rico, Mayagüez campus. Camera trapping has revealed many animals interacting with the plant suggesting the importance of forest remnants for the species conservation. Our work is providing baseline information for developing a sound species recovery plan based on population genetics and the conservation status of remnants of preferred habitat. The project provides a framework for the collaboration on the conservation of regional endemics and for prioritizing the research needs of these species.

Keywords: Biogeography, Caribbean, Conservation, Cordiaceae, Recovery
The conservation of New Caledonian rare and endangered species threatened by mining activities, the need of a global approach for a big challenge

Bruno Fogliani *† 1, Guillaume Lannuzel 1, Gildas Gâteblé 1, Shankar Meyer 2

1 Institut Agronomique néo-Calédonien (IAC) – BP 73 Port Laguerre, 98890 Païta, New Caledonia
2 Association Endemia – BP 4682, 98800 Nouméa, New Caledonia

New Caledonia is a tropical archipelago located in southwest Pacific, and recognized as a hotspot of biodiversity. Within its exceptional flora (3389 species), about 20% have been recognized as narrow endemic species (NES). Locally, narrow endemism has been poorly studied, but is supposed to be linked with ultramafic soil, topography specificity, and climate diversity of the archipelago. Nevertheless, these species, more than others, are threatened by human-induced events, such as mining activity, bushfires, and alien species. In order to prioritize conservation actions for so many NES, we initiated several research programs from 2007 in order to define priority conservation areas, to develop a method to easily evaluate their potential distribution and to identify their nursery requirements for in situ reinforcement and ex situ preservation. All NES were mapped across New Caledonia, and "Hotspots of Narrow Plant Endemism" (HNPE) were defined as the areas containing more than 7 NES per 2-by-2 km square cell. Secondly, we modelled the potential distribution of 25 of the rarest species from Mount Kaala (one of the HNPE) using occurrence data from two sampling campaigns, and 8 high-resolution environmental predictors in a Species Distribution Model (SDMs) framework. Finally, ecological studies were conducted (phenology, population status, mapping, collection, germination) to propose management plans for these species. Distributional data produced on NES permitted to establish a map of "HNPE" and to identify locations in most urgent need for further conservation assessment and subsequent action. The method applied for modelisation on Mount Kaala permitted to support the ability of presence-only SDMs to predict areas of high conservation value using fine-resolution environmental layers and field-collected occurrence. After 2 years of activities on this area, there were nearly 800 surveys from field prospections, 10 species studied for their germination requirements with nearly 8 that led to the production of more than 200 plants. All these data allow to provide recommendations and to propose practical tools for the protection of rare and endangered species. It also permitted to enrich extinction risk assessment by the New Caledonia Plants Red List Authority.

Keywords: narrow endemic species, species distribution models, conservation action plans

*Speaker
†Corresponding author: fogliani@iac.nc
Ex situ seed conservation of Hawaiian ‘exceptional species’ as a case study for tropical island floras

Marian M. Chau *,† 1, Timothy Chambers 2, Lauren Weisenberger 3, Matthew Keir 4, Timothy Kroessig 1, Dustin Wolkis 5, Roy Kam 2, Alvin Yoshinaga 1

1 Lyon Arboretum – University of Hawai`i at Mānoa (LA-UHM) – 3860 Manoa Road, Honolulu, HI 96822, United States
2 U.S. Army Natural Resources Program on O`ahu (ANRP-O) – 413 Oahu Street, Building T-1123 Schofield Barracks, HI 96857, United States
3 U. S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office (USFWS-PIFWO) – 300 Ala Moana Blvd Rm 3-122, Honolulu, HI 96850, United States
4 State of Hawai`i Department of Land and Natural Resources – Division of Forestry and Wildlife (DLNR-DOFAW) – 1151 Punchbowl St. Room 325, Honolulu, HI 96813, United States
5 National Tropical Botanical Garden (NTBG) – 3530 Papalina Road, Kalaheo, HI 96741, United States

The Hawai‘i Seed Bank Partnership conducts research on *ex situ* storage protocols for Hawai‘i’s native flora, and has gathered real-time data from hundreds of species for more than two decades. Seed storage behavior has been investigated, and 197 species have been assessed for seed freeze-sensitivity, a loss of viability in frozen storage (-18°C) when compared to refrigerated storage (5°C). A new index of Relative Performance was calculated with paired storage experiments at -18 and 5°C. Four Hawaiian families and 10 genera showed freeze-sensitivity or likely freeze-sensitivity. Additionally, we assessed 295 species for *ex situ* storage longevity. We recommend re-collection intervals, before viability falls below 70% of maximum germination, which range from > 20 to < 5 years, depending on the species. The largest family in the Hawaiian flora, Campanulaceae, is a spectacular example of adaptive radiation, with 159 endemic species in 6 genera from a single colonization, and over half are assessed as threatened on the IUCN Red List. The Hawaiian Campanulaceae is highlighted as a characteristic example of *ex situ* seed freeze-sensitivity and variation in longevity. This is the most comprehensive, long-term study to date on seed storage behavior and *ex situ* longevity for a regional flora. A high incidence of seed freeze-sensitivity is not yet known in any other region, so we present a protocol for testing seed freeze-sensitivity that can be utilized or adapted globally. Seed banking is now a critical tool for Hawaiian plant conservation, including these ‘exceptional species’ with freeze-sensitive seeds. Therefore, the Hawaiian flora can serve as a model for other tropical, subtropical, and island regions that might utilize seed banking to preserve species of conservation importance, now or in the future.

Keywords: Campanulaceae, freeze sensitivity, genebank, Hawaii, seed banking

*Speaker
†Corresponding author: mmchau@hawaii.edu
The IUCN Plant specialist group for Macaronesia: Using transnational cooperation and updated scientific data to better understand and mitigate the threats to oceanic island floras.

Mónica Moura *,† 1, Juli Caujapé-Castells * ‡ 2

1 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Pólo dos Açores, InBIO Laboratório Associado, Universidade dos Açores – Rua da Mãe de Deus 13A 9501-801 Ponta Delgada, Portugal, Portugal
2 Jardín Botanico Canario “Viera y Clavijo”-Unidad Asociada al CSIC – Camino del palmeral 15, Tafira Alta 35017 Las Palmas de Gran Canaria, Spain

Following the recent publication of thorough multidisciplinary reviews of current and emerging threats of the native floras of the Macaronesian region (encompassing the archipelagos of the Açores, Madeira and Selvagens, Canaries, and Cape Verde), a new Macaronesian Islands Plant Specialist Group (MISPG) was constituted for the period 2017-2020 under the IUCN Species Survival Comission to assess the most urgent priorities for the conservation of the native Macaronesian floras, and to improve the impact of conservation science and practice for a better preservation of plant biodiversity in this multi-national insular region. The talk will delve into the most important priorities identified by the participating specialists, emphasizing examples on the needs to enrich and update the IUCN red list information available, to provide expert advice to eradicate the most important threats to the floras (introduced mammals, invasive alien plants and other consequences of global changes), and to upscale and enforce the application of multi-disciplinary research results in the planning of in situ conservation actions, alongside with strategically designed outreach activities with relevant stakeholders and social actors whose cooperation is needed for the effective improvement and enforcement of the existing nature protection laws. Overall, this IUCN chair aims to put into practice the most urgent actions suggested by the most updated scientific evidence, entailing a collaborative framework that should encompass Universities, Botanic Gardens and Regional Administrations competent in the protection of the environment in the Macaronesian area.

Keywords: Conservation, IUCN, Macaronesia, oceanic islands
The IUCN Seed Conservation Specialist Group: Connecting experts, identifying gaps, and developing best practices

Uromi M. Goodale *,† 1, Marian M. Chau 2, Katei Marfleet 3

1 Guangxi Key Laboratory for Forest Ecology and Conservation – Guangxi University, China
2 Lyon Arboretum – University of Hawai‘i at Mānoa, United States
3 Botanical Gardens Conservation International – 199 Kew Road Richmond Surrey, United Kingdom

The IUCN Species Survival Commission (SSC) is a global network of more than 7500 scientific experts, working together to achieve "A just world that values and conserves nature through positive action to reduce the loss of diversity of life on earth." The SSC includes over 140 Specialist Groups, organized taxonomically, regionally, or by discipline. The SSC Seed Conservation Specialist Group (SCSG) was proposed at the 2016 IUCN World Conservation Congress and established in 2017, and its mission is to promote seed conservation by providing a network for knowledge-sharing in different ecosystems around the world, and aiding in prioritization, capacity building, and development of best practices. "Seed conservation" is defined as banking and/or preserving seeds of wild species, particularly those that are threatened or near threatened, primarily for *ex situ* germplasm storage and future reintroduction. The SCSG is comprised of experts including native seed bank managers, conservation program managers, national/international coordinators, and other specialists from around the world, and Botanic Gardens Conservation International serves as its secretariat. The work we do reduces risks faced by species and ecosystems, and it improves the status of biodiversity by safeguarding ecosystems, species, and genetic diversity. Our primary targets for the 2016-2020 quadrennium are: (i) Actively recruit new members (https://www.bgci.org/plant-conservation/scsg), (ii) Create an online global Seed Conservation Directory of Expertise (2018) (http://www.bgci.org/plant-conservation/seedexpertise), (iii) Conduct and publish a regional and topical gap analysis of seed conservation expertise (2019), (iv) Create IUCN Guidelines on Seed Conservation (2020). Recruitment is ongoing, and membership is open to all who are interested in seed conservation.

Keywords: ex situ, expert group, genetic resources, seed conservation

*Speaker
†Corresponding author: uromi.manage.goodale@outlook.com
Red Lists and open data: how the New Caledonia Plant Red List Authority has brought together environment professionals, scientists and amateur experts

Shankar Meyer *,† 1, Philippe Birnbaum 2, Gildas Gâteblé 3, David Bruy 4,5, Vincent Tanguy 6

1 Association Endemia – BP 4682, 98800 Nouméa, New Caledonia
2 Botanique et Modélisation de l’Architecture des Plantes et des Végétations (UMR AMAP) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR51-2015, Institut Agronomique Néo-Calédonien – Bd de la Lironde TA A-51/ PS 2 34398 Montpellier cedex 5, France
3 Institut Agronomique néo-Calédonien (IAC) – BP 73 Port Laguerre, 98890 Païta, New Caledonia
5 Herbier de la Nouvelle-Calédonie (NOU) – 101 promenade Roger Laroque, BP A - 98800 Nouméa, New Caledonia
6 New Caledonia Plants Red List Authority (NC Plants RLA) – Endemia BP 4682 98800 Nouméa, New Caledonia

New Caledonia is a French overseas archipelago administrated by three provinces, each responsible for the management of its environment. This fragmented jurisdiction has led to a management of the vegetation inconsistent with the geographic distribution of the native plant species, which is obviously rarely limited to a single province. In 2014, an informal group of botanists bringing together environmental managers, scientists, as well as passionate amateurs, proposed to assess the extinction risk of all native plant species by using the Red list methodology. Approved by IUCN and free from provincial boundaries, the Red List Authority of the New Caledonian Flora (RLA-NC) deeply altered the endangered status of the New Caledonian vegetation. In the past, expert appreciation was the only available tool to determine which species should be protected by provincial stakeholders. Nowadays, the local protection status can be based on the Red List status and the assessment carried out by the RLA-NC. To this day, an eye-opening 42% of the ca. 1500 assessed species are considered as threatened and undergo heavy anthropogenic threats such as bushfires, mining activities and invasive species. The RLA-NC is a very useful tool for federating stakeholders, gathering raw data and providing a more accurate picture of the taxonomy and distribution of plant species. Nevertheless, the in situ conservation of threatened species remains a challenge for managers who do not have the wherewithal to efficiently undertake species-by-species protection. We acknowledge that protected area planning is a more applied strategy in which the Red List of Threatened Species is an indispensable element. Finally, the least predictable success of RLA-NC was to become in just a few years a key authority that is consulted before any environmental decisions and whatever the legislative fragmentation.

Keywords: IUCN, New Caledonia, plant conservation, Red List

*Speaker
†Corresponding author: coordination@endemia.nc
Strategies for conservation of endemic species in protected areas of Cabo Verde islands

Herculano Andrade Dinis *1,2, Isildo Gomes 3, Samuel Gomes 3, Gilda Monteiro 1, Adalzira Marques 4, Maria Romeiras 5,6

1 National Direction of the Environment (DNA) – Fogo, Cape Verde
2 Associação Projecto Vitó (Projecto Vitó) – Xaguate, São Filipe, Fogo, Cape Verde
3 National Institute of Agrarian Research and Development (INIDA) – Santiago, Cape Verde
4 National Direction of the Environment – Sal, Cape Verde
5 Centre for Ecology, Evolution and Environmental Changes (cE3c) – Faculdade de Ciências Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
6 LEAF, Linking Landscape, Environment, Agriculture and Food, ISA, Instituto Superior de Agronomia (LEAF-ISA) – Tapada da Ajuda, 1349-017 Lisboa, Portugal

Cabo Verde has a rich marine and terrestrial biodiversity, but most of the endemic groups have restricted geographic distribution and high vulnerability to threats, mainly due to the loss or alteration of their habitats. Establishment of conservation priorities in light of this environmental degradation requires sound knowledge on the distribution of biodiversity and identification of sites that are potentially important for conservation actions. Over the past decade, there have been some important successes including, the publication of the IUCN assessments for endemic plants and reptiles, and the establishment of the protected areas systems. In fact, the creation of the National Network of Protected Areas in 2003, allowed the elaboration of management tools to safeguard the unique biodiversity of Cabo Verde. Despite recent successful interventions, the management of the national protected areas system faces a number of problems, namely insufficient financial and staffing commitments. The purpose of this communication is to show several practical examples of how the implementation of the Network of Protected Areas in Cabo Verde has been promoting participatory approaches to biodiversity conservation. Particular emphasis is given to some Natural Parks where a great diversity of endemic species occur, namely in the: i) Fogo Natural Park, which occupies an area of 8,469 hectares in Fogo Island; ii) Natural Park of Serra da Malagueta with an area of 774 ha (Santiago Island); and the two Natural Parks of the Santo Antão Island (i.e. Natural Park of Cova / Paul / Ribeira da Torre, area: 2091.50 ha and Natural Park of Moroços, area of 818.10 ha). Finally we will discuss how present management activities done within these protected areas have contributed to the reintroduction of threatened endemic species in their natural habitats and to control the invasive exotic species.

Keywords: in situ conservation, IUCN Red List, Macaronesia islands, threatened species, vascular flora

*Speaker
†Corresponding author: pnfogo.segecol@gmail.com
Conservation of crop wild relatives of Macaronesian Islands: current status and outlook

Maria Romeiras *, Guilherme Roxo 1, Filipa Monteiro 2,1, Luís Silva 3, Juli Caujapé-Castells 4, Miguel Menezes De Sequeira 3, Inês Fernandes 1, Maria Cristina Duarte 2, Mónica Moura 3

2 Centre for Ecology, Evolution and Environmental Changes (cE3c) – Faculdade de Ciências Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
1 LEAF, Linking Landscape, Environment, Agriculture and Food, ISA, Instituto Superior de Agronomia (LEAF-ISA) – Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 CIBIO- Açores - Research Centre in Biodiversity and Genetic Resources, InBIO - Research Network in Biodiversity and Evolutionary Biology, Associate Laboratory – University of the Azores, Ponta Delgada, Açores, Portugal
4 Jardín Botánico Canario ‘Viera y Clavijo’-Unidad Asociada CSIC (Cabildo de Gran Canaria) – Tafira Alta, 35017 Las Palmas de Gran Canaria, Spain

In view of the expected future climate changes, it is of the utmost importance to broaden the gene pool of global crop species to increase their resilience to these possible changes. The contribution of Crop Wild Relatives (CWR) to improve crop performance is growing and has largely been achieved through the donation of useful genes for biotic and abiotic stress tolerance. However, CWR are becoming increasingly threatened in the wild and are inadequately conserved, both in situ and ex situ. The Macaronesian Islands (i.e. Azores, Canaries, Madeira and Cabo Verde) are among the top biodiversity hotspots in Europe, containing a relevant genetic diversity also as regards CWR. An effective conservation and utilization of this huge native biodiversity is dependent on the availability of, and access to, high quality ecogeographic information about each taxa (i.e., their distribution, biology, ecology and conservation status, with respect to the environments in which they grow), as well as their ex situ conservation status. In this communication, we present a checklist of the most important CWR of Macaronesian Islands and make comparative analyzes of their patterns of diversity across all the archipelagos. Specifically, we will provide new data to: i) characterize the CWR diversity in each archipelago, based on taxonomic, distribution and ecological data; ii) identify the most important CWR radiations within the Macaronesian Islands; and iii) determine potential areas of occurrence for these species. New data will be available to support the design of conservation tools/plans for prioritized CWR within the Macaronesian Islands.

Keywords: Agrobiodiversity, Biodiversity hotspot, Gene Pool, in situ Conservation, Prioritizing CWR taxa

*Speaker
Plenary Sessions

Contents

The island biogeography of alien species, Tim Blackburn 86
What can we learn about invasion ecology from ant invasions of islands ?, Lori Lach 87
The Island Biogeography of Alien Species

Tim Blackburn*

1 University College London (UCL) – Bloomsbury, Londres WC1H 0AG, United Kingdom

Biological invasions by alien species – those transported by human actions to areas in which they do not naturally occur – represent one of the primary ways in which people are changing global biodiversity. Islands appear to be particular hotpots of alien species richness. This has been argued to reflect the greater invasibility of these locations, as a result of differences in how ecological processes such as interspecific interactions, underlying productivity or degree of disturbance act on islands versus continental mainlands. Variation in alien species richness has also been argued to provide insights into the patterns and processes structuring natural assemblages, because alien species are likely to follow some of the same laws as native species but break others. However, biological invasions are a consequence of a combination of factors - human actions, species characteristics, and environmental conditions - and so their study weaves together elements of history, biology, and geography. In this talk, I show why we would expect human actions to be the most important drivers of alien island biogeography, and why a failure to account for these is likely to lead to misleading conclusions about the causes of variation in the distribution and richness of alien species – even the question of whether islands are indeed more invasible than mainlands.

Keywords: Biological invasions, colonisation pressure, isolation, propagule pressure, species area relationship, species richness

*Speaker
What can we learn about invasion ecology from ant invasions of islands?

Lori Lach ∗† 1

1 College of Science and Engineering, James Cook University (JCU) – PO Box 6811, Cairns, Qld 4870, Australia

Nowhere are ecological communities more transformed by invasive species than on islands. The words ‘islands’ and ‘invasive species’ may evoke images of rats, cats, and goats preying on defenseless birds and mammals and devouring and trampling native plants. However, invasive ants have earned their place on the list of some of the world’s most invasive species, and few, if any, inhabited tropical islands would have escaped invasion by one or more non-native ants or possibly even invasive ants. My talk will draw on results of multiple experiments investigating ant interactions with resident flora and fauna in insular and continental habitats and experience incorporating ant ecology into management actions and policy. From these experiences, I draw five broad lessons about ant invasions. 1) Context matters in determining the direction and magnitude of impacts. Ant populations will be dependent on access to resources, often plant-derived, and outcomes of their interactions will depend on which interactors are present and their role in the ecosystem. 2) Although context matters, knowledge of adverse experiences elsewhere is still a powerful motivating tool for management action, as it should be. Many of our best examples come from ant invasions of islands. Undoubtedly, this is partly because of 3) the ‘simpler’ floral and faunal compositions characteristic of islands. The lower species richness of islands means that they lack some of the functional redundancy that is characteristic of more speciose ecosystems. However, their relative simplicity also more readily enables characterization of the context of interactions and their impacts. Relatively depauperate biota have a modest capacity to buffer change, and therefore 4) island ecosystems are more dynamic than continental ecosystems. Changing conditions may eliminate or decrease the importance of some interactions but introduce or increase the importance of others. Some invasive ants weather these changes better than others. Therefore, islands may be the best place to investigate ‘boom and bust’ cycles. However, 5) though natural population declines of invaders are gaining attention, we cannot predict them, nor are they fast or certain enough to warrant complacency where invasive ants pose a threat to biodiversity. Looking to the future, islands can be important settings for trialing new techniques and novel methods for addressing problems posed by invasive ant species. Many of the lessons learned from ant invasions can be extended to other invasive biota.

Keywords: biological invasions, impacts, taxon cycle, dysharmony, model taxa

∗Speaker
†Corresponding author: lori.lach@jcu.edu.au
Biogeography

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why theory in island biogeography needs to integrate within-island heterogeneity and non-neutral species, Manuel Steinbauer</td>
<td>89</td>
</tr>
<tr>
<td>An extended framework for the general dynamic theory of biogeography, Mark Carey [et al.]</td>
<td>90</td>
</tr>
<tr>
<td>Effects of current and historical geography on island biodiversity revealed by an agent-based computer simulation, Madli Jóks [et al.]</td>
<td>91</td>
</tr>
<tr>
<td>The small island effect: an appraisal of mechanisms, Tom Matthews [et al.]</td>
<td>92</td>
</tr>
<tr>
<td>Isolation by elevation promotes speciation on islands globally, Richard Field [et al.]</td>
<td>93</td>
</tr>
<tr>
<td>The role of habitat heterogeneity in the taxonomic and functional diversity of Macaronesian spider communities, Paulo A. V. Borges [et al.]</td>
<td>94</td>
</tr>
<tr>
<td>A roadmap for island bryophyte biogeography and evolution, Jairo Patiño</td>
<td>96</td>
</tr>
</tbody>
</table>
Why theory in island biogeography needs to integrate within-island heterogeneity and non-neutral species

Manuel Steinbauer *† 1

1 Geozentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) – Loewenichstr. 28, 91054 Erlangen, Germany

Most established theories in island biogeography are neutral as all species are treated equally and each island is integrated as one unit. MacArthur & Wilson already acknowledged this unrealistic aspect of their theory in 1967. However, it is only now that trait availability and computational power allow testing species pool concepts that account for species-specific differences. In addition, as potential island colonisers vary in their adaptation to environmental conditions, different ecozones within islands should differ in establishment probabilities of focal species. The objective of this talk is to outline the potential of a non-neutral theory of island biogeography. Using dispersal and plant growth strategy related trait patterns within islands I will show that ecozones within islands can be quantified as distinct biogeographical units. The evolutionary dynamics within the island should be influenced by these differences. Analyses of the distribution pattern of endemic species within islands provide strong support for this expectation. Further highlighting the potential of within-island studies, I will use the convergent evolution of secondary woodiness to show that the differences in environmental conditions within islands can be used to test fundamental questions in biogeography. Integrating within-island heterogeneity into theories in island biogeography is thus a crucial step forward.

Keywords: dispersal, island biogeography, plant growth strategies, secondary insular woodiness, theories in island biogeography

*Speaker
†Corresponding author: Manuel.Steinbauer@fau.de
An extended framework for the general dynamic theory of biogeography

Mark Carey *† 1, John Boland‡ 2, Gunnar Keppel 1

1 University of South Australia (UniSA) – School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
2 University of South Australia (UniSA) – School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia

The General Dynamic Model of biodiversity (GDM) explains patterns of species richness on volcanic hotspot archipelagos with respect to island age (T) and area (A) by adjoining a hump-shaped function of T to the species area relationship (SAR). There are three main GDM models: 1) the semi-log ATT^2 model, which is an extension of a semi-log SAR, 2) the Power ATT^2 model which is a linear combination of a quadratic expression of island age and power law SAR and 3) the LogATT^2 model, where a power law in A is scaled by a lognormal function of T. We assess the relative performance of these models and compare their performance to other models including A or T or both. In light of our findings and the mathematical properties of the best performing models, we propose an extended framework for species richness models within the GDM. Species richness data was gathered from databases and published sources, resulting in 30 datasets for various taxa. We used the Akaike Information Criterion corrected for small sample size (AICc) to compare the relative performance of all models tested. Of the GDM models the LogATT^2 model performed best in all cases. However, in almost 3/4 of the cases the best model overall was one that contained A or T only. For the Canary Islands area was not a significant predictor for any taxa which was probably due to the two old, low lying, but still relatively large islands of Fuerteventura and Lanzarote. The mathematical properties of the Log ATT^2 can be leveraged to derive an extended framework within the GDM which both connects it logically to other models and incorporates the cases where models containing only A or T were the best models. It also allows one to formulate a criterion for the consistent inclusion of predictors other than A and T i.e., that a substituted variable (say, elevation or a habitat diversity measure substituted for area) or an adjusted variable (say, area adjusted by an aridity index) have an approximately lognormal profile in T.

Keywords: general dynamic model, species area relationships, species richness, island ontogeny, choros model

*Speaker
†Corresponding author: Mark.Carey@unisa.edu.au
‡Corresponding author: John.Boland@unisa.edu.au
Effects of current and historical geography on island biodiversity revealed by an agent-based computer simulation

Madli Jõks *,† 1, Holger Kreft 2,3, Patrick Weigelt 3, Meelis Pärtel 4

1 Institute of Ecology and Earth Sciences, University of Tartu – Lai 40, 51005 Tartu, Estonia
2 Centre of Biodiversity and Sustainable Land Use, University of Göttingen – Büsgenweg 1 37077 Göttingen, Germany
3 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büsgenweg 1. 37077 Göttingen, Germany
4 Institute of Ecology and Earth Sciences, University of Tartu – Lai 40, 51005 Tartu, Estonia

Oceanic islands continue to pose intriguing study questions, and tools from computer science allow us to approach these classical systems in a novel way. Mechanistic simulations enable researchers to experiment and test theories at large spatial and temporal scale, and thus, can greatly help us to understand the processes behind island biodiversity patterns. We have developed an agent-based computer simulation to study the effects of habitat diversity, archipelago configuration and geological history of Hawaii, Galapagos, Canary Islands, Cape Verde and Azores. Our simulation is spatially explicit, non-neutral and emulates real-world archipelagos, which is a rare combination in island models. We used simplified archipelago maps as a simulation arena and implemented immigration, dispersal, establishment, competition, evolution and disturbance on autonomous agents, which represented populations of different species. We tested how habitat diversity and spatial configuration of archipelagos affected the correlations between simulated and observed plant diversity. We also tested for effects of the geologic history of Hawaii, Galapagos and the Canary Islands on plant, bird and insect biotas. We ran three scenarios for each archipelago: with a static present-day map, with a static Last Glacial Maximum map and with a dynamic map in which island properties changed, mimicking island growth and erosion. We found habitat diversity to be an important factor to achieve realistic simulation results in all five archipelagos, whereas archipelago configuration was important only in the archipelagos with more linear configuration (i.e. Hawaii and Azores). Results also suggest that Last Glacial Maximum geography and geologic history have had a strong effect on plant and insect biodiversity in Hawaii and Galapagos, but less so in the Canary Islands. For birds, we found a universal trend across all archipelagos: present-day geography led to the most realistic simulation results, suggesting that birds as a very dispersive group have already adjusted to the present archipelago geography. The emergent patterns from our simulations suggest that both current and historical geography affect the biodiversity of oceanic archipelagos and that the effects differ among archipelagos and taxonomic groups. We suggest that agent-based simulations are an effective yet underexplored tool for gaining mechanistic knowledge of island biodiversity.

Keywords: habitat diversity, archipelago configuration, geologic history, agent based simulations, computer simulations

*Speaker
†Corresponding author: madli.joks@ut.ee
The small island effect: an appraisal of mechanisms

Tom Matthews ∗† 1, François Rigal 2, Kostas Kougioumouftzis 3, Panagiotis Trigas 4, Kostas A. Triantis 3

1 University of Birmingham [Birmingham] – EdgbastonBirmingham B15 2TT, United Kingdom
2 Université de Pau et des Pays de l’Adour (UPPA) – Université de Pau et des Pays de l’Adour, Université de Pau et des Pays de l’Adour – Avenue de l’Université - BP 576 - 64012 Pau Cedex, France
3 National and Kapodistrian University of Athens – Athens, Greece
4 Agricultural University of Athens – Athens, Greece

The small island effect (SIE) can be broadly described as a different relationship between island area species richness on smaller islands compared to larger ones. The first graphical representation of the pattern was in 1963, and the SIE has been the subject of widespread renewed interest over the last 15 years. However, there is still considerable debate surrounding the mechanisms underpinning the pattern. In this regard, a number of mechanisms have been argued to underpin the prevalence of SIEs in island systems, and these can be broadly split into two groups: 1) mechanisms based on the idea that on small islands extinction rates vary independently of island area, and 2) mechanisms focused on a primary role for habitat diversity in driving the SIE. However, these different mechanisms have been studied in isolation and we lack a clear understanding of their relative importance. Here, we focus on a large and well sampled dataset of plant species distributed across multiple islands of varying size in the Aegean Sea. First, we compiled a database of the presence-absence of 3262 native plant species on 173 Aegean islands. We then compared piecewise regression models with standard linear SAR models to assess whether there was a breakpoint in the SAR (i.e. a traditional SIE). After finding strong statistical support for the presence of a SIE in the data, we used information on island characteristics and the evolutionary relationships between species to undertake an extensive evaluation of the mechanisms driving the observed SIE. Our findings provide evidence supporting the role of habitat diversity in driving the traditional SIE, and thus improves our understanding of community assembly on islands more generally.

Keywords: small island effect, species, area relationship, thresholds, island biogeography

∗Speaker
†Corresponding author: txm676@gmail.com
Isolation by elevation promotes speciation on islands globally

Richard Field *, Vanessa Cutts 1, Adam Algar 1, Manuel Steinbauer 2

1 University of Nottingham, UK (UON) – University of NottinghamUniversity ParkNottinghamNG7 2RD, United Kingdom
2 Geozentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) – Loewenichstr. 28, 91054 Erlangen, Germany

Islands and elevational gradients provide valuable opportunities for testing hypotheses to explain diversity gradients. One such hypothesis, which has received recent support from a global study of islands, is that isolation from equivalent climates increases per-species speciation rate. Higher-elevation areas on islands and continental mountains tend to be separated by longer distances from equivalent climates, predicting higher speciation rate and endemism at higher elevations. So far, this has only been tested for archipelago-level isolation and endemism. Here we test novel predictions derived from the hypothesis, for island plants: single-island endemics are correlated only with within-archipelago elevational isolation (prediction 1); multi-island endemics are correlated more strongly with extra-archipelago elevational isolation (prediction 2). Using 100 m elevational bands and entire floras for each of 32 high-elevation islands, we calculated the proportion of native species that are (i) single-island endemics, (ii) multi-island endemics and (iii) archipelago endemics. We tested their correlations with the different measures of elevational isolation. The results were consistent with both predictions: the percentage of single-island endemics correlates with isolation from the next island, while the percentage of archipelago endemics correlates with isolation from the mainland. This may represent an important step forward in understanding island endemism, and patterns of biodiversity more generally.

Keywords: Archipelago, elevational gradients, endemism, isolation, speciation
The role of habitat heterogeneity in the taxonomic and functional diversity of Macaronesian spider communities

Paulo A. V. Borges (*1), Jagoba Malumbres-Olarte (1,2), Marco Girardello (1), Pedro Cardoso (1,2), Isabel R. Amorim (1), Luis Crespo (2,3), Miquel Arnedo (3), Mario Boeiro (1), Jose Carvalho (1,2,4), Rui Carvalho (1,2), Rosalina Gabriel (1), Lucas Lamelas-Lopez (1), Heriberto López (5), Octavio Paulo (6), Fernando Pereira (1), Antonio J. Pérez Delgado (5,7), Carla Rego (1), Maria Romeiras (8), Alejandra Ros-Prieto (1), Pedro Oromí (7), Brent C. Emerson (5), François Rigal (9)

1 Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores (cE3c) – Universidade dos Açores Rua Capitão João d’Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Terceira, Açores, Portugal
2 Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, (LIBRe) – P.O.Box 17 (Pohjoinen Rautatiekatu 13), 00014 Helsinki, Finland
3 Biodiversity Research Institute (IRBio), Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona – Barcelona, Spain
4 Centre for Molecular and Environmental Biology, Department of Biology, University of Minho – 4710-087 Braga, Portugal
5 Island Ecology and Evolution Research Group (IPNA-CSIC) – C/ Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain
7 Dept. of Animal Biology and Edaphology and Geology, University of La Laguna (ULL), – 38206 La Laguna, Tenerife, Canary Islands, Spain
8 Linking Landscape, Environment, Agriculture and Food (LEAF), – Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
9 Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux, MIRA, Environment and Microbiology Team – Centre national de la recherche scientifique - CNRS (France) – UMR 5254, BP 1155, 64013 Pau, France

Despite the fact that we have improved our understanding of how island age, size and isolation affect the structure of insular communities, we still fall short in knowing the effects of environmental (climatic and (micro)habitat) variability on the diversity and functional structure of island communities at different spatial scales, i.e., from small plots, to habitats, islands and archipelagos. In this work we use the Macaronesian archipelagos as a model to understand the effects of environmental heterogeneity on the taxonomic and functional diversity of spider communities. By using standardised data from across four archipelagos with a range of climatic and (micro)habitat conditions, we tested two hypotheses related to the consequences of environmental heterogeneity: 1) variation in spider communities responds positively to heterogeneity at both regional and local plot scales; and 2) local environmental conditions act as a second functional filter for species into the communities that they ultimately form. Following the standardised sampling protocol COBRA, we collected spider specimens at 50 m x 50 m plots across eight Macaronesian islands. We generated community data from taxonomically identified and functionally characterised specimens and species, and obtained climatic and habitat data from satellite imagery. Through a series of null-models and hierarchical linear models, we tested the relationships between environmental variability and alpha and beta diversity for several functional groups. Habitat type, and environmental and (micro)habitat variability were correlated, with dry habitats having more heterogeneous climates and habitats. Spider communities were also more variable (greater beta diversity values)
at both regional and local scales. The response of the functional structure of spider communities to environmental variability was reflected in the differences in the relative abundances of species belonging to different predatory guilds: web building species were more dominant in structurally more complex areas. Our findings point at the need to consider different spatial scales when investigating the effect of environmental heterogeneity on the assembly and structure of island communities.

Keywords: macroecology, Macaronesia, spider Communities, functional diversity, habitat structure
A roadmap for island bryophyte biogeography and evolution

Jairo Patiño *

1 Universidad de La Laguna (ULL) – Plant Conservation and Biogeography Group. Departamento de Botánica, Ecología y Fisiología Vegetal. Facultad de Ciencias. Apartado 456, CP 38200, Universidad de La Laguna. La Laguna, Tenerife, Islas Canarias, Spain

In the last years we have seen a fascinating progression in the knowledge of how evolutionary and ecological processes shape biodiversity on islands, but also how insular biotas interact with continental biological assemblages. However, distinguishing among processes that can take place over different timescales but causing similar (phylo-)genetic signatures has remained problematic. In this respect, cutting-edge analytical tools have brought unprecedented insights into the mechanisms governing community assembly on islands. The same technical advances have challenged the view of oceanic islands as evolutionary dead-ends, which had been built on typical insular syndromes such as the loss of dispersal capacities, to recently emphasize the role of oceanic islands not only as hotspots of endemism but also as glacial refugia for continental biodiversity. Here I review whether traditional theories in biogeography and evolution hold for extremely mobile organisms, using bryophyte floras from oceanic archipelagos as a model. In particular, I revisit questions such as (i) how oceanic island and continental bryophyte floras relate; (ii) to what extent the island syndromes apply to this group of spore-producing plants; and (iii) what mechanisms or phenomena can explain the low levels of island endemism observed in bryophytes as compared to angiosperms. Based on innovative biogeographical, phylogeographic and genetic approaches, this talk aims at providing a general view on the underlying processes that shape diversity and community assembly in bryophytes, opening the door to exciting avenues of research.

Keywords: diversification, diversity, long distance dispersal, oceanic islands, speciation

*Speaker
Community / Functional Ecology

Contents

Niches and neutrality on a tropical oceanic island: explaining diversity and turnover in moth assemblages in island rainforests, Roger Kitching [et al.] .. 98
Diversity and community composition of herbivorous thrips vary along environmental gradients, but plant effects remain an important driver, Niry T. Dianzinga [et al.] 99
A trait-based approach to assess functional responses of epiphytic liverworts to environmental gradients, Lovanomenjanahary Marline [et al.] .. 100
Ecosystem services associated with water: the role of the liverwort Frullania tamarisci along an elevation gradient in Terceira Island (Azores) for one year, Rosalina Gabriel [et al.] .. 101
Functional diversity of the flora of the Canary Islands, Dagmar Hanz [et al.] 102
The importance of accounting for imperfect detection when estimating functional and phylogenetic structure of bird communities on land-bridge islands, Xingfeng Si [et al.] 103
Landscape structure influences niche-based and neutral mechanisms of community assembly in a fragmented insular dry forest, Grégoire Blanchard [et al.] 104
Resilience of tropical forests to cyclones: an individual-based model simulation approach, E-Ping Rau [et al.] .. 106
Niches and neutrality on a tropical oceanic island: explaining diversity and turnover in moth assemblages in island rainforests

Roger Kitching *,† 1, Wenda Cheng 2, Shuang Xing 2, Louise A. Ashton 2, Jacques Rochat 3,4, Christophe Thébaud 5, Dominique Strasberg 6

1 Griffith University [Brisbane] – PO Box 3370South Brisbane QLD 4101, Australia
2 University of Hong Kong – Hong Kong, China
3 Micropoda – 97419 La Possession, Réunion
4 UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT - INRA) – 97410 St-Pierre, Réunion
5 Université Paul Sabatier – Toulouse Paul Sabatier University (UPS) – Toulouse, France
6 UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT) – Université de la Réunion – 15 avenue René Cassin, 97744 Saint Denis Cedex, France

Spatially driven turnover in species composition and relative abundance drives gamma diversity in all ecosystems. Assemblages of nocturnal Lepidoptera in rainforests are powerful tools for estimating and understanding this heterogeneity. There are three fundamental theoretical hypotheses for explaining this place-to-place change: neutral stochasticity, niche-driven opportunity and historical contingency. These mechanisms may act in concert and, in any case, are not necessarily independent of each other. At two seasons in 2018 we sampled moths across a set of ten sites in the mid-elevation rainforests of eastern Réunion. A total of 6115 individuals of about 280 species was processed. We analysed these against distance and pre-existing data on the woody flora of the same sites. Unique for these data sets, we were able to subdivide the species encountered into local and regional endemics, and non-endemics. The outcomes are complex but, in summary, local occurrence of the generally more diet-restricted endemic moths is more likely to be niche-driven due to evolved host-plant preferences while occurrence of the generally more polyphagous non-endemic species is most parsimoniously explained by stochastic neutral mechanisms. Spatial pattern in the underlying native flora may also occur as stochastic neutrally assembled sets across the rainforest region (with implications for native moth species) whereas introduced species reflect human-driven historical contingency. Implications of future changes will be discussed.

Keywords: Mascarenes, moths, Lepidoptera, Réunion, species turnover, woody plants

*Speaker
†Corresponding author: r.kitching@griffith.edu.au
Diversity and community composition of herbivorous thrips vary along environmental gradients, but plant effects remain an important driver

Niry T. Dianzinga *,† 1, Marie-Ludders Moutoussamy 2, Joëlle Sadeyen 2, Lala H. R. Ravaomanarivo 3, Samuel Nibouche 2, Enric Frago 2,4

1 Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBM) – Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 Saint-Denis Cédex 9 pour le Cirad Station de Ligne-Paradis - 7 chemin de ÎIRAT - 97410 Saint-Pierre, Réunion
2 UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBM - INRA) – 97410 St-Pierre, Réunion
4 Centre de Biologie pour la Gestion des Populations (CBGP) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR55 – 755 avenue du Campus Agropolis, 34988 Montferrier sur Lez, France

Elevational gradients are a powerful tool to explore how species communities respond to changes in environmental conditions along short geographic distances. It is usually observed that species diversity decrease monotonically with elevation, or follow a mid-elevation peak. These effects, however, may vary among taxa and geographic regions. Changes driven by elevation may also depend on landscape characteristics like habitat heterogeneity and patchiness, but also on seasonal variations such as those occurring between cold and hot seasons. Here, we used as biological model thrips (Insecta: Thysanoptera), which is a diverse group of slender insects, to investigate the drivers of insect diversity and of community composition along elevational gradients in Reunion Island. We sampled thrips on 106 plant species belonging to 44 families along seven replicated elevated gradients from 0 to 1,600 m in both summer and winter conditions. We identified 4,278 specimens representing 41 species and we estimated their diversity both at the local (alpha) and at the compositional (beta) diversity level. These metrics were related with elevation, and with landscape characteristics around each site, which included habitat diversity and patchiness (or fragmentation). We found that different thrips communities are directly related to host plants: invasive plants hosted a large diversity of thrips, whereas some endemic ones hosted unique communities. Elevation, patchiness and season were variables with an evident effect on both alpha and beta diversity. Beta diversity revealed that diversity of thrips was larger at low elevations, and this change was mostly dominated by richness differences (i.e. low elevation sites had more unique species than high elevation ones). Our results show that important diversity patterns can be appreciated through the lens of beta diversity, and may help to understand how regional pools of insects are distributed in relationship with topography, landscape and climatic conditions.

Keywords: tropical island, environmental gradients, beta diversity, alpha diversity, thrips

*Speaker
†Corresponding author: niry.dianzinga@gmail.com
A trait-based approach to assess functional responses of epiphytic liverworts to environmental gradients

Lovamenjanahary Marline ∗† 1, Claudine Ah-Peng *

2, Olivier Flores *

2, Terry Hedderson *

1

Department of Biological Sciences, University of Cape Town (UCT) – Private Bag X3, Rondebosch 7701, South Africa, South Africa

2 Université de la Réunion (UMR PVBM) – 7 chemin de l’IRAT, 97410 Saint-Pierre, Réunion

Assessing species responses to changes in their environment and the effect of biotic interactions in shaping communities, are important steps in understanding ecosystem functioning. A trait-based approach assessing community diversity might be as important as, and/or more meaningful than other community ecology approaches. The aim of this study is to use trait-based approach to assess the relationship between bryophyte species functional diversity and community assembly. We evaluate how bryophyte species functionally interact with their abiotic and biotic environments and how habitat filtering and niche differentiation influence bryophyte assemblages along an elevational gradient. This study was carried out in Marojejy National Park, northern Madagascar. Epiphytic liverworts were collected along an elevational gradient, at 200 m intervals from 250 m to 2050 m (BRYOLAT methodology). Twelve morphological traits potentially related to resource use, life history, species defence, resistance to desiccation and photosynthetic activity are studied. Our results provide evidence that assemblage of epiphytic liverwort community is driven by climatic conditions and vegetation structure, affecting the occurrence of species among and within communities. Liverwort’s morphological traits tend to shift from convergent to divergent with an increasing elevation. Higher temperature and taller vegetation appear to have driven a strong functional convergence of size related traits at lower elevations but have allowed for divergence in these at higher elevation. Habitat filtering and niche differentiation along the same transect both explained observed species abundance in communities. Whilst habitat filtering is associated with trait convergence and is strongest at lower elevations, niche differentiation associated with trait divergence occurs at higher elevations and is higher at the most species-rich sites. Other physiological traits related to features such as, photosynthetic capacity and carbon fixation need to be considered in the future to better understand relationships between species composition and ecosystem processes. Environmental filtering and niche differentiation jointly determine species occurrence and distribution within communities. Such result in understanding functional traits diversity of bryophyte assemblages is important notably in the evaluation of Malagasy tropical forest ecosystems state as a basis for conservation planning.

Keywords: Liverworts, Madagascar, Marojejy National Park, Morphological traits, Rainforest

∗Speaker
†Corresponding author: marlinelova@gmail.com
Ecosystem services associated with water: the role of the liverwort Frullania tamarisci along an elevation gradient in Terceira Island (Azores) for one year

Rosalina Gabriel *,† 1, Mância C.m. Coelho 1, Claudine Ah-Peng 2

1 cE3c/GBA – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores – Faculty of Agriculture and Environment (cE3c/GBA) – Rua Capitão João d’Ávila, sn, 9700-042 Angra do Heroísmo, Portugal
2 PVBMT - Plant Communities and Biological Invaders in Tropical Environment and University of La Réunion (PVBMT - ULR) – Saint-Denis, Réunion

Water is essential to life, and vital to all processes related with the metabolic functioning of plants. Bryophytes depended almost exclusively on external water supply due to their simple morphological features and absence of true vascular tissues. Thus, they tend to mimic the environmental conditions of different areas and seasons, being good indicators of ecological processes. Moreover, bryophytes are able to intercept rain and dew (liquid water) and use fog (water vapour), and transport water both externally, by capillary forces, and internally, in different cells (specialized or not). Thus, bryophytes play an important role in water-flow regulation through their unique water holding ability. Notwithstanding this role, almost no data exists on the quantification of the water inputs into the system. In this study we aimed to know how the Field Water Content (FWC) of a common liverwort species (Frullania tamarisci) varies along the year, in three native vegetation stands, at different altitudes in Terceira Island, and how do climate variables (temperature, precipitation, relative humidity, vapour pressure deficit) affect its Relative Water Content (RWC) along the four seasons. In order to quantify the species’ hydration status at three different elevation native vegetation stands (40 m, 600 m and 900 m), five samples of approximately 20 shoots were monthly collected in the field, kept in waterproof containers, and later that day weighted in the laboratory, to get FWC. The same samples were then fully hydrated, weighted, oven dried and weighted, to get RWC. As expected, FWC increases along the elevation gradient, reaching 9 g/g during at the highest elevation and about half of that value in the lowest location, during the wettest seasons (winter and spring). RWC values show that the plants keep hydrated for the whole year, albeit never reaching their full capacity, with a yearly average of ca. 40%. Understanding how much native bryophytes, acquire, store, and release water into the system contributes to the knowledge of native vegetation resilience in the face of climate change and, especially, potential impacts on the availability and quality of water - a major ecosystem service performed by plants.

Keywords: bryophytes, ecophysiology, ecosystem services, liverworts, water holding ability

*Speaker
†Corresponding author: rgabriel@uac.pt
Functional diversity of the flora of the Canary Islands

Dagmar Hanz ∗† 1, Adam Algar 2, Martha Paola Barajas Barbosa 3, Carl Beierkuhnlein 4,5,6, Vanessa Cutts 2, José María Fernández-Palacios 7, Richard Field 2, Holger Kreft 3,8, Manuel Steinbauer 9, Patrick Weigelt 3, Severin Irl 1,5

1 Institute of Physical Geography, Goethe-University Frankfurt (IPG) – Altenhöferallee 1, 60438 Frankfurt am Main, Germany
2 University of Nottingham, UK (UON) – University of NottinghamUniversity ParkNottinghamNG7 2RD, United Kingdom
3 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büsgenweg 1. 37077 Göttingen, Germany
4 Department of Biogeography, University of Bayreuth – Universitätsstraße 30 95447 Bayreuth, Germany
5 Bayreuth Centre of Ecology and Environmental Research, University of Bayreuth (BayCEER) – Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
6 Geographical Institute Bayreuth (GIB) – Universitätsstraße 30, 95447 Bayreuth, Germany
7 Island Ecology and Biogeography Research Group, Universidad de La Laguna – C/ Padre Herrera s/n Apartado Postal 456 38200, San Cristóbal de La Laguna Santa Cruz de Tenerife - España, Spain
8 Centre of Biodiversity and Sustainable Land Use, University of Göttingen – Büsgenweg 1 37077 Göttingen, Germany
9 Geozentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) – Loewenichstr. 28, 91054 Erlangen, Germany

Plant traits that determine under which environmental conditions plants can survive and reproduce have gained increasing interest, especially in the face of rapid global change. However, research on functional traits of island floras has been underrepresented so far. This is despite the fact that islands harbour an exceptionally high diversity of endemic plant species which have adapted to an isolated environment. In this study, we measured the functional differences between all endemic and non-endemic spermatophytes of the Canary Islands (n = 2197) in order to identify how environment drives species’ distributional patterns. Therefore, we modelled species’ occurrences and collected data on functional morphological traits, associated with resource allocation and dispersal ability. Subsequently, we calculated different measures of functional diversity and analysed the resulting patterns across climatically and topographically-determined zones. Overall, we found that endemic plant species were functionally less diverse and had less extreme trait values than non-endemic plant species (Figure 1). Interestingly, we show that there are only few trait combinations that are exclusively associated with endemism and that many trait characteristics are redundant across endemic and non-endemic plant species. Even across environmental zones species occupied similar sets of the functional spectra. However, functional dissimilarity across environmental zones occurred when endemics where removed from the analyses. All in all, our results indicate that most endemic species are not functionally unique and are able to occupy a broad environmental niche. We conclude that the adaptation of plant species to isolated island environments yields species with a similar set of functional traits suitable for the occurrence across diverse environmental conditions.

Keywords: biogeography, Canary Islands, endemism, functional traits, plant functional diversity

∗Speaker
†Corresponding author: hanz@geo.uni-frankfurt.de
The importance of accounting for imperfect detection when estimating functional and phylogenetic structure of bird communities on land-bridge islands

Xingfeng Si *,† 1, Marc Cadotte 2, Morgan Tingley 3, Ping Ding 4

1 East China Normal University (ECNU) – 500 Dongchuan Road, Shanghai 200241, China
2 University of Toronto-Scarborough (UTSC) – 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
3 University of Connecticut (UCONN) – 44 Weaver Road, Unit 5233, Storrs, CT 06269, United States
4 Zhejiang University (ZJU) – 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China

Incorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. The goal of this study is to assess how imperfect detection of species biases estimates of different measures of diversity, as well as community structure of island birds. Bird communities were surveyed annually in the breeding season (April–June) from 2007 to 2016 on 36 islands in the Thousand Island Lake, China. We employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies in a land-bridge island system. Our results showed that taxonomic, functional and phylogenetic diversity were all underestimated significantly as a result of species’ imperfect detection, with taxonomic diversity showing the greatest bias. The functional and phylogenetic structure calculated from observed communities were both more clustered than those from the detection-corrected communities due to missed distinct species. The discrepancy between observed and estimated diversity differed per the measure of biodiversity employed. Our study demonstrates the importance of accounting for species’ imperfect detection in biodiversity studies, especially for functional and phylogenetic community ecology. With datasets that allow for detection-corrected community structure, we can better estimate diversity and infer the underlying mechanisms that structure community assembly, and thus make reliable management decisions for the conservation of biodiversity.

Keywords: Bayesian analysis, detectability, functional trait, habitat fragmentation, phylogenetic diversity

*Speaker
†Corresponding author: sixf@des.ecnu.edu.cn
Landscape structure influences niche-based and neutral mechanisms of community assembly in a fragmented insular dry forest

Grégoire Blanchard *† 1,2, François Munoz 3, Philippe Birnbaum 1,2

1 Institut Agronomique Néo-Calédonien, équipe Sol & Végétations (SolVeg) (IAC) – 101 Promenade Roger Laroque, New Caledonia
3 Laboratoire d’Ecologie Alpine (LECA) – Centre National de la Recherche Scientifique : UMR5553, Université Savoie Mont Blanc, Université Joseph Fourier - Grenoble 1, Université Grenoble Alpes – bat. D - Biologie 2233 Rue de la piscine - BP 53 38041 GRENOBLE CEDEX 9, France

Tropical islands often exhibit a singular biodiversity within small areas, making them particularly vulnerable to habitat loss and fragmentation. However, we still lack an integrative understanding of how changes in landscape structure impact the dynamics of these ecosystems. In this study, we address the influence of past and present landscape structure on niche-based (deterministic) and neutral (stochastic) components of tree community dynamics in insular forests undergoing habitat loss and fragmentation. We characterized the current taxonomic and functional (wood and leaf traits) composition of 100 tree communities in a dry forest of New Caledonia that underwent habitat loss and fragmentation over the last decades. We used a mechanistic coalescent-based model to simulate community assembly from the observed species pool under varying parameters of immigration and trait-based environmental filtering. By comparing the composition of simulated and observed communities, we inferred parameter values of environmental filtering and immigration shaping the composition of observed communities (Approximate Bayesian Computation). Then, we used partial regressions to evaluate the relationships between inferred parameter values and landscape metrics (distance to edge, patch area, and habitat amount around communities) derived from either recent or past (65 yrs ago) aerial photographs, while controlling for the effect of soil and topography. We found significant relationships between landscape metrics and both parameters related to environmental filtering and immigration. Environmental filtering was affected by both past and recent landscape structure and were mainly influenced by distance to edge and topography. In contrast, immigration rate was primarily linked to past landscape structure, and was positively correlated to habitat amount surrounding communities. Our results show that landscape structure can influence both niche-based and neutral assembly processes in fragmented landscapes. Recent edges creation can affect environmental filtering, resulting in rapid changes in community composition. Nonetheless, the effects of habitat loss and isolation on neutral migration-drift dynamics may take longer to impact community composition. Recently isolated communities may thus be subject to an extinction debt. Our study highlights the importance to include the history of landscapes into conservation policies to better assess the effects of habitat loss and fragmentation on biodiversity dynamics.

Keywords: landscape, habitat loss and fragmentation, environmental filtering, neutral dynamics, assembly

*Speaker
†Corresponding author: gblanchard@iac.nc

sciencesconf.org/ib2019:253588
processes
Resilience of tropical forests to cyclones: an individual-based model simulation approach

E-Ping Rau *, Fabian Fischer 1, Emilie Joetzjer 2, Isabelle Maréchaux 3, Jérôme Chave† 1

1 Laboratoire Evolution et Diversité Biologique – CNRS : UMR5174 – Université Toulouse III Paul Sabatier
Bâtiment 4R1 118, route de Narbonne 31062 Toulouse cedex 9, France
2 Centre national de recherches météorologiques (CNRM) – Météo France, Centre National de la Recherche Scientifique : UMR3589 – 42, avenue Gaspard Coriolis 31057 Toulouse Cedex 1 France, France

Tropical cyclones can have a major impact on tropical forests, and their intensity is believed to increase in the next decades. In addition, these forests have high level of biodiversity and endemism and are exposed to anthropogenic activities. However, a comprehensive understanding of the long-term effects of tropical cyclones on the structure and dynamics of tropical and subtropical forests has yet to emerge. Here, we coupled an individual-based forest dynamic model, TROLL, with a global climatic boundary condition, the CRU-NCEP re-analysis climate data. We applied this model to a subtropical forest of Taiwan, in a region with the highest frequency of cyclone visits in the world. We showed that the CRU-NCEP data represented reasonably well climatic forcing at the local level. We also compared extreme wind data derived from reanalysis dataset with best-track data (IBTrACS), which specifically track tropical cyclone path and intensity around the world. Baseline simulation results showed adequate fit between simulated and observed forest structure metrics (such as maximum height, tree density, and aboveground biomass.) Wind regimes were related to treefall probability using a bio-mechanic model, accounting for tree allometry, wood density and local neighborhood effect. As the intensity of extreme wind conditions increased, we observed a critical transition from a ”forest” state to a ”non-forest” state, suggesting a non-linear behavior of the system. A cross-site comparison was performed including sites from the Caribbean region, and showed that the model was also able to capture the dynamics of these forests. Future work should explore the vulnerability of forests to cyclonic events at global scale and under climate change scenarios.

Keywords: climate change, cyclone, forest, tree allometry, treefall

*Speaker
†Corresponding author: jerome.chave@univ-tlse3.fr
Conservation

Contents

Who really benefits from the worsening human-wildlife conflict and mass-culling of an endangered island flying fox on Mauritius?, Vincent Florens [et al.] .. 108

Ten years of monitoring and conservation of an endemic island parrot, Monica Grif- fith [et al.] .. 109

Five phases of long-term invasive species management: Lessons from the Amami mongoose eradication project, Yuya Watari ... 110

The value of the long-term Seychelles White-eye Recovery programme and challenges faced by the species, Elvina Henriette [et al.] ... 111

Population dynamics of an endangered endemic seabird of Réunion Island, the Barau’s Petrel (Pterodroma baraui): implications for conservation, Emilienne Grzegorczyk [et al.] .. 112

Metabarcoding analysis of endemic lizards’ diet for guiding reserve management in the Macaronesian islands, Catarina Jesus Pinho [et al.] ... 113

Endemic plant species are more palatable to introduced herbivores than non-endemics, Severin Irl [et al.] ... 114

Great genetic diversity but high selfing rates and short-distance gene flow characterize populations of a tree (Foetidia; Lecythidaceae) in the fragmented tropical dry forest of the Mascarene islands, Nicolas CuÉnin [et al.] ... 115
Who really benefits from the worsening human-wildlife conflict and mass-culling of an endangered island flying fox on Mauritius?

Vincent Florens *,† 1 , Christian E. Vincenot 2

1 University of Mauritius – Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Reduit, 80837, Mauritius
2 Kyoto University – Department of Social Informatics, Kyoto University, Kyoto, Japan

Island flying foxes (genus Pteropus) are among the most endangered bats worldwide and face many threats including conflict arising over them consuming commercial fruits. Mauritius provided a severe example of such conflict when it mass-culled the last surviving of its three originally present native Pteropus species despite it being already threatened with extinction. The situation provides a rare opportunity to explore possible solutions to a type of threat that is growing worldwide. We surveyed the approaches and arguments used by the principal stakeholders involved both in favor and against mass-culling as the preferred strategy in this human-wildlife conflict and assessed their respective strengths and weaknesses as well as their efficacy in reaching their intended objectives. Although the mass-culling of 2015 and 2016 failed to improve fruit growers profits, government ordered a third mass-cull in 2018 targeting 20% of the already halved population despite the International Union for Conservation of Nature worsening the Red List category of the species from ‘Vulnerable’ to ‘Endangered’ a few months earlier. To justify its stance, authorities continue to discard best scientific evidence and reasoning to favor unreasonable claims. The human-wildlife conflict surrounding the flying fox continues to worsen despite appeals and efforts for dialogue from numerous conservation organizations over several years. The lack of intended results from previous mass-culling campaigns did not either bring Mauritius to reconsider its position on ordering mass-culls. Mauritius’ stance is consistent with first pitting planters against conservationists followed by taking decisions that superficially appear to support planters. Although this stance does not improve planters’ profits, it conveys an impression that boosting profits is government’s main concern, and helps rally at least short-term political support in the wake of forthcoming general elections. While conservationists should continue to foster research for innovative solutions and dialogue with politicians as well as education and sensitization of stakeholders to encourage solutions coming from the grass-roots, they should also acknowledge the limitations of these approaches and engage when necessary into more impactful strategies, including litigation. Currently, a case has been lodged in the supreme court of Mauritius against government’s decision to mass-cull the Endangered flying fox.

Keywords: conservation, endangered species, fruit bats, Humans wildlife conflict, policy

*Speaker
†Corresponding author: Vin.Florens@uom.ac.mu
Ten years of monitoring and conservation of an endemic island parrot

Monica Griffith *, 1, Terance Payet *

1, Jennifer Appoo *

1, Frauke Fleischer-Dogley 1, Nancy Bunbury 1

1 Seychelles Islands Foundation (SIF) – La Ciotat Building, Mont Fleuri, P.O. Box 853 Victoria, Mahé, Seychelles

The Seychelles archipelago consists of 115 islands and yet the national bird, the Seychelles black parrot Coracopsis barklyi, the females of which emit melodious, individually unique calls when breeding, is endemic to only the small (38.5km2) island of Praslin. Coracopsis barklyi is the only remaining parrot species in the Seychelles, but with a tiny and highly restricted population, is highly vulnerable to a range of threats including introduced species, habitat change, climate change impacts and disease. Despite its significance, little was known about C. barklyi until recently, and it was only declared a distinct species in 2014. Ten years ago a long-term monitoring programme was set up to understand the breeding behaviour, population dynamics and trends, and threats to C. barklyi. Methods included nest monitoring, ringing chicks, trapping trials to determine the impact of rats on breeding success, population surveys, mist-netting and ringing adults and disease-screening. Challenges have included C. barklyi’s tendency to nest in fragile dead palm trunks that cannot be directly climbed so a new method was developed and is used for nest monitoring. The monitoring programme has overturned previous assumptions; for example that there is a lack of nesting cavities, and that the species breeds on Curieuse. Our monitoring has shown highly variable breeding activity and relatively low overall breeding success. There are sufficient breeding cavities available in most seasons and drivers of low breeding success appear to include invasive species, among other factors. The population appears to be stable but invasive species, including rats and yellow crazy ants, are a significant concern. The presence of introduced ring-necked parakeets Psittacula krameri on nearby Mahé island posed a serious threat to C. barklyi, due to potential transmission of PBFD virus but the virus has not been detected in C. barklyi and P. krameri has now been eradicated from Seychelles. This long-term monitoring programme has substantially aided our understanding of C. barklyi’s ecology and conservation needs and will inform future conservation actions, such as translocations to other islands. The monitoring programme will continue and should prevent this species from following the Seychelles parakeet, Psittacula wardi to extinction.

Keywords: breeding success, invasive alien species, island endemic, long term monitoring programme, parrot conservation.
Five phases of long-term invasive species management: Lessons from the Amami mongoose eradication project

Yuya Watari * 1

1 Forestry and Forest Products Research Institute (FFPRI) – 1 Matsumosato, Tsukuba, Ibaraki, 305-8687 JAPAN, Japan

In recent years, there is growing evidence that invasive species can be eradicated mainly from small islands, which allows us to recognize eradication as a realistic target for invasive species management. If we can feedback the findings obtained to other projects, we could raise the overall success of invasive species management programs. In this presentation, I introduce an outline of the mongoose eradication project on Amami-Oshima Island (712 km2), Japan, since 2000, which is the biggest mongoose management project. The project has now reached the final phase, where the number of captured mongooses has decreased to only one in 2018, under tremendous management efforts such as by about 2.7 million trap-days, mongoose detection dogs, and pinpoint use of poison bait. Based on the findings of the project, I generalize the roadmap for long term and large island invasive species management by dividing it into five phases. I show that it is necessary that tactics should be updated in the course of the project according to the varying population status. I also show that it is important to establish the governance design, which promotes breakthroughs to proceed to the next phases. In order to establish an appropriate governance, a collaborative system between government, researchers, and residents is needed. Finally, I provided a practical checklist for long term and large island invasive species management. The roadmap and checklist presented in this review are expected to be utilized as guidelines for examining the concept and direction of ongoing various invasive species management programs.

Keywords: recovery of native species, eradication, invasive species management, Amami, Oshima island, governance

*Speaker
The value of the long-term Seychelles White-eye Recovery programme and challenges faced by the species

Elvina Henriette *, Gerard Rocamora †, Andre Labiche

1 Island Biodiversity & Conservation, University of Seychelles (IBC-UniSey) – P.O. Box 1348 Anse Royale, Mahé, Seychelles

The Seychelles White-eye *Zosterops modestus* is one of the globally threatened endemic species. The White-eye became almost extinct because of the excessive nest predation exerted by introduced rats, particularly the Black rat *Rattus rattus*. As part of the Seychelles White-eye Recovery Programme (SWERP), started in 1998, two successive island translocations were conducted from the original source population on Conception Island to two rat free islands in 2001-03 (Frégate) and 2007 (Ile du Nord). Subsequently, the global population size of this species doubled from c. 300 birds in 1998 to 600 birds in 2012. Consequently, the species was downlisted from Critically Endangered to Endangered in the IUCN Red List. The Seychelles White-eye Species Action Plan requires another two island transfers to bring the species to Vulnerable and eventually down to Near-Threatened status. There are currently no rat-free islands suitable for the species in the Mahé group archipelago. Hence Grande Soeur Island, in the Praslin group which was recently rat-free were considered for a translocation of the White-eye from Conception Island. Moreover, a proposal for the reinforcement of the population on Mahe was considered. During a survey on Conception Island early 2018 it was discovered that the White-eye population had been dramatically reduced from ca. 300 individuals to less than a dozen due to invasion of the once rat-free island by the Black rat. The global population stands at ca. 400 individuals a reduction from 650 individuals in 2014. This stresses the key role of biodiversity and how all these island endemics restricted to islands freed of introduced rats remain highly vulnerable to reinvasion. So the more island populations are retored the better it is for the survival of the species, and this is what is being done as part of the SWERP. The long-term Seychelles White-eye Recovery programme (1998-2019) shows that it is possible to successfully save a species but that there are several challenges that needs to be faced. The success of conservation introductions along island restorations programmes paves the way for other species that faces similar problems.

Keywords: conservation, endangered species, islands, invasions, translocation

*Speaker
†Corresponding author: whiteeye@seychelles.net
Population dynamics of an endangered endemic seabird of Réunion Island, the Barau’s Petrel (Pterodroma baraui): implications for conservation

Emilienne Grzegorczyk *, Christophe Barbraud 2, Patrick Pinet 3, Matthieu Le Corre 1

1 UMR Ecologie Marine Tropicale des Océans Pacifique et Indien (UMR ENTROPIE) – CNRS : UMR9220, Institut de recherche pour le développement [IRD] : UR250, Université de la Réunion – 15 Avenue René Cassin, CS 92003, 97744 St Denis Cedex 9, Ile De La Réunion, France

2 Centre d’Études Biologiques de Chizé (CEBC) – CNRS : UMR7372, Université de La Rochelle – CNRS UMR 7372 - 79360 VILLIERS-EN-BOIS, France

3 Parc national de La Réunion, Life+ Pétrels – 258 Rue de la République, 97431 Plaine des Palmistes, Réunion

Island biodiversity is threatened by many factors, such as alien species and habitat destruction. These threats are particularly worrying on islands because a large proportion of island biodiversity consist of endemic species. Réunion Island is the only island in the world where two endemic species of petrels breed, the Mascarene Petrel (Critically endangered) and the Barau’s Petrel (Endangered). Both species are threatened by light pollution which attract and disorientate hundreds of fledglings each year and predation by invasive mammals at breeding colonies. Several conservation actions are implemented since several years to reduce both threats: rescue campaigns to save fledglings attracted by lights and cat and rat control at breeding colonies. The goals of our study was to investigate the population dynamics of Barau’s Petrel in order to assess the efficiency of these conservation actions. The study was based on 15 years of mark-recapture data and breeding success monitoring implemented at two breeding colonies. Our model suggests that both predator control and rescue campaigns of fledglings attracted by lights, have positive effects on population dynamics. Thus the Barau’s Petrel is a conservation dependant species. It’s therefore necessary that the conservation actions continue in order to ensure the survival of this species. Our study also shows that coupling population monitoring and conservation actions is crucial to evaluate the efficiency of these actions and to adapt conservation strategies to changes in population dynamics.

Keywords: endemic seabird, conservation, CMR, extinction risk, Indian Ocean
Metabarcoding analysis of endemic lizards’ diet for guiding reserve management in the Macaronesian islands

Catarina Jesus Pinho 1,2, Vanessa Gil 3, Bárbara Santos 1,2, Vanessa A. Mata 1,2, Carlos Aguiar 3, Mariana Seguro 1, Carolina Jardim 4, Maria Romeiras 3,5, Rui Rebelo 3, Ricardo Jorge Lopes 2, Raquel Vasconcelos † 2

1 Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP) – R. Campo Alegre, 4169-007 Porto, Portugal
2 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto (CIBIO/InBIO) – Campus Agrário de Vairão, 4485-661 Vairão, Portugal
3 Centre for Ecology, Evolution and Environmental Changes (cE3c) – Faculdade de Ciências Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
4 Instituto das Florestas e Conservação da Natureza (IFCN) – IP-RAM, Funchal, Madeira, Portugal
5 LEAF, Linking Landscape, Environment, Agriculture and Food, ISA, Instituto Superior de Agronomia (LEAF-ISA) – Tapada da Ajuda, 1349-017 Lisboa, Portugal

Islands are considered natural laboratories as they represent simplified models and hold a higher number of endemic and threatened species when compared with the mainland. Therefore, studying their ecological networks is of high importance for developing accurate conservation plans. Interesting study models for evolutionary and ecological studies are the reptiles of the Macaronesian Islands, especially the ones inhabiting remote areas. Some of them present uncommon ecological and evolutionary patterns, and most have simplified trophic webs that remain poorly studied. The diet of the most widespread continental *Tarentola* species is already widely studied using classical methods. However, only one known study was performed using next-generation sequencing (NGS) techniques for this genus and very few for reptiles in general. The main objective was to assess diet composition of two endemic geckos from Macaronesia, the emblematic giant wall gecko of Cabo Verde *Tarentola gigas*, and the Selvagens gecko *Tarentola (boettgeri) bischoffi* of those Portuguese islands, using DNA metabarcoding to provide valuable information to the conservation of these threatened species. Little was known on both their ecology and dietary habits. In the first study, we aimed to compare the diet of the two subspecies of *T. gigas* to discuss options regarding its reintroduction on an island where it went extinct. In the second, we compared morphological and DNA metabarcoding techniques associated to very different sampling efforts to check the impacts on the representation of the Selvagens gecko’s diet and discussed advantages and limitations of both methods. Results have revealed that both species are generalists, feeding on plants, invertebrates and even vertebrates. Using metabarcoding, we were able to identify a higher diversity of dietary items, many that formerly went unnoticed, with generally higher taxonomic resolution than using traditional methods, and to reveal that plants have a significant role in their diets. They also revealed the importance of expeditions to remote areas, such as Monaco Explorations, to decrease knowledge gaps. Overall, the information revealed by these ecological networks is important for the development of conservation plans on these protected areas and reinforce the important and commonly neglected role of reptiles on island system.

Keywords: conservation genetics, protected Areas, remote areas

*Speaker
†Corresponding author: raquel.vasconcelos@cibio.up.pt
Endemic plant species are more palatable to introduced herbivores than non-endemics

Severin Irl *† 1, Jonay Cubas 2, Rafael Villafuerte 3, Víctor Bello-Rodríguez 2, Juan Luis Rodríguez-Luengo 4, Marcelino Del Arco 2, José Luis Martín-Esquivel 5, Juana María González-Mancebo 2

1 Institute of Physical Geography, Goethe-University Frankfurt (IPG) – Altenhöferallee 1, 60438 Frankfurt am Main, Germany
2 Universidad de La Laguna [Tenerife - SP] (ULL) – S/C de Tenerife Spain, Spain
3 Instituto de Estudios Sociales Avanzados (IESA-CSIC) – Campo Santo de los Mártires, 14004 Córdoba, Spain
4 Servicio de Biodiversidad. Gobierno de Canarias – Edificio de Usos Múltiples I. Avda. de Anaga, 35. 38170 Santa Cruz de Tenerife, Tenerife, Islas Canarias, Spain
5 Parque Nacional del Teide – C/Sixto Perera González 25, 38300 La Orotava, Tenerife, Islas Canarias, Spain

Oceanic islands harbour a spectacular diversity and unique species composition, thus being major contributors to global plant biodiversity. This uniqueness is mainly a result of endemic plant species that have evolved in-situ, often in the absence of mammal herbivores. However, island endemism is under severe threat by introduced herbivores, especially generalist herbivores such as the European rabbit (Oryctolagus cuniculus). The European rabbit has been introduced to a large number of islands around the world, where it has been recognized as a major threat to island plant species and island ecosystems. We test the long-standing assumption that endemic species are particularly vulnerable to generalist introduced herbivores (European rabbit) using an unprecedented dataset covering an entire island (n = 210) with enormous topographic, climatic and biological diversity (Tenerife, Canary Islands). We find that, with increasing endemism, plant species are more heavily browsed by rabbits than non-endemic species with up to 67% of endemics being negatively impacted by browsing. This indicates a dramatic lack of adaptation to mammal herbivory in endemics, making endemics much more palatable to introduced generalist herbivores than native non-endemic or non-native plant species. Further, ecosystems with a high percent endemism are most heavily browsed, suggesting ecosystems-specific vulnerability to introduced herbivores, even within islands. Interestingly, rabbit density is a poor predictor of browsing damage, illustrating that ecosystems-specific density-damage relationships exist. Thus, conservation initiative should consider applying ecosystem-specific rabbit densities as basis for management efforts. To protect global biodiversity offered by disproportionally high endemism on oceanic islands ecosystem-specific herbivore control and eradication measures are of highest priority.

Keywords: Conservation, island endemism, invasive species, mammalian herbivory, European rabbit

*Speaker
†Corresponding author: irl@geo.uni-frankfurt.de
Great genetic diversity but high selfing rates and short-distance gene flow characterize populations of a tree (Foetidia; Lecythidaceae) in the fragmented tropical dry forest of the Mascarene islands

Nicolas CuÉnin 1, Olivier Flores 1,2, Eric RiviÈre 3, GÉRARD Lebreton 3, Bernard Reynaud 4, Florent Martos *† 5

1 Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT) – Université de la RÉunion – Station de Ligne-Paradis – 7 chemin de lIRAT – 97410 Saint-Pierre, France
2 Université de La RÉunion - UMR Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT) – 15 avenue René Cassin 97744 SAINT DENIS Cedex, Réunion
3 UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT) – CIRAD – 97410 St-Pierre, France
4 UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical Laboratoire (UMR PVBMT - CIRAD) – Université de la RÉunion – PÔle de protection des plantes 97410 Saint-Pierre, France
5 Institut de Systématic, Évolution, Biodiversité UMR 7205 (ISYEB) – Museum National d’Histoire Naturelle – 45 rue Buffon, 75005 Paris, France

Following the global trend of deforestation and degradation, tropical dry forests in the Mascarenes archipelago on Reunion has undergone harsh reduction and fragmentation within 3 centuries of human occupation. We investigated the genetic diversity, mating system, and gene flow in fragmented populations of the native tree Foetidia mauritiana (Lecythidaceae) on Reunion, using microsatellite genotyping of adults (in- and ex situ) and seed progenies (in situ only). To test genetic isolation between the Mascarene islands, we also genotyped conspecific adults on Mauritius, and trees of Foetidia rodriguesiana on Rodrigues. We found a high genetic diversity among the trees on Reunion, but no population structure (GS'T: 0.039–0.090), and an increase of the fixation index (FIS) from adults to progenies. A subsequent analysis of mating systems from progeny arrays revealed selfing rates > 50% in fragmented populations and close to 100% in lone trees. A paternity analysis revealed pollen flow ranging from 15.6 to 296.1 m within fragments. At broader scale, the populations of F. mauritiana on Reunion and Mauritius are genetically differentiated. The morphologically allied taxa F. rodriguesiana and F. mauritiana are clearly isolated. Therefore, this case study shows that genetic diversity may persist after deforestation, especially in long-lived tree species, but the reproductive features may be deeply altered during this process. This would explain the low seed production and the absence of recruitment in F. mauritiana. Restoration programs should take into account these features, as well as the importance that trees ex situ represent in restoring and conserving diversity.

Keywords: genetic erosion, habitat fragmentation, island biota, mating systems, pollen dispersal, tropical dry forests

*Speaker
†Corresponding author: florent.martos@mnhn.fr
Evolution on Islands

Contents

Endemism within island ecosystems - Functional drivers of speciation, Carl Beierkuhnlein 117

Diversification analysis of a songbird lineage within a remote archipelago suggests a role for intra-island speciation, Maëva Gabrielli [et al.] 118

Human-driven extinctions have erased the evolutionary history of flightlessness in island birds, Ferran Sayol [et al.] 119

Multiple colonizations and parallel radiations of Peperomia (Piperaceae) on the Hawaiian Islands suggest context-dependent role of niche preemption in diversification on oceanic islands, Junying Lim [et al.] 120

Towards a comprehensive understanding of Oxera’s island life, Gildas Gâteblé [et al.] 121

Unraveling the stages of ant diversification in Madagascar, Evan Economo [et al.] 122

Unraveling the history of Apis mellifera in the islands of the South-West Indian Ocean: what we have learned from genetic, genomic, morphometric and ecological approaches, Johanna Clémercet [et al.] 123

Evolution of dengue viruses on islands, Shannon Bennett 124
Endemism within island ecosystems - Functional drivers of speciation

Carl Beierkuhnlein *† 1

1 University of Bayreuth – Universitätsstr. 30, 95440 Bayreuth, Germany

Islands and archipelagos are considered as classic showcases to study speciation and diversification. Established approaches relate these processes to biological aspects such as phylogenies of taxa or diversity within taxonomic groups and to geographical aspects such as distances to other habitats or island size and elevation. In this study, we disentangle the patterns of endemism for single island endemics as well as for archipelago endemics at the scale of individual ecosystems. We consider ecosystems as functional units within islands that differ considerably in site conditions and processes. The aim is to achieve a better understanding on the contribution of ecosystem functioning and dynamics for the development and establishment of endemic species. The increasing proportion of endemism with elevation hints at diversifying processes within islands resulting from ecological isolation. However, ecological isolation can also become effective between ecosystems. Species are not distributed individually along spatial or ecological gradients, but organized through long-term evolved biotic interactions in communities and ecosystems. Here, we focus on plant species in the Canary Island archipelago and their attribution to ecosystems that are established on this set of islands. We calculated the spatial extent of major ecosystem types on all islands, and assigned all plant species to ecosystems for every single island. Many species have been recorded in several ecosystems, others are strictly tied to a particular ecosystem. Many species occur on several islands, some are archipelago endemics, others are single island endemics. We classify plant species into native (non-endemic), archipelago endemics, single island endemics, and alien (including invasive) species. By combining these levels of information, we construct a new view on the importance of ecosystems within islands for speciation. We find that the spatial extend of ecosystems within islands plays a minor role. Extensive ecosystems such as Canary Pine forest can host less species than the laurel forest, but surprisingly show a higher proportion of endemism. It is rather the type of ecosystem (e.g. fayal-brezal) that is linked on all islands with a high proportion of endemism. Harsh environments at the coast exhibit a high proportion of native species, but less endemics and alien species.

Keywords: archipelago endemics, biodiversity, Canary islands, plants, turnover

*Speaker
†Corresponding author: carl.beierkuhnlein@uni-bayreuth.de
Diversification analysis of a songbird lineage within a remote archipelago suggests a role for intra-island speciation

Maëva Gabrielli 1*, Benoit Nabholz 2, Thibault Leroy 2, Borja Milá 3, Christophe Thébaud 4

1 Laboratoire Evolution et Diversité Biologique (EDB) – CNRS : UMR5174, Université Paul Sabatier (UPS) - Toulouse III, Institut de recherche pour le développement [IRD] : UMR5174, ENSFEA – Bâtiment 4R1 118 Route de Narbonne 31062 TOULOUSE CEDEX 4, France
2 Institut des Sciences de l’Évolution de Montpellier (ISEM) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR116-2015, Université de Montpellier, Institut de recherche pour le développement [IRD] : UR226, Centre National de la Recherche Scientifique : UMR5554 – Place E. Bataillon CC 064 34095 Montpellier Cedex 05, France
3 Museo Nacional de Ciencias Naturales – Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28006, Spain
4 Laboratoire Evolution et Diversité Biologique (EDB) – CNRS : UMR5174, Université Paul Sabatier (UPS) - Toulouse III, Institut de recherche pour le développement [IRD] : UMR5174, ENSFEA – Bâtiment 4R1 118 Route de Narbonne 31062 TOULOUSE CEDEX 4, France

Island endemic congeners can be sister species that have arisen through intra-island speciation following initial colonization by a common ancestor, or they may represent multiple independent colonization events. These two contrasting scenarios provide different expectations regarding the relative roles of natural selection and geographic isolation in driving speciation. However, discriminating between the two scenarios has proven difficult and demonstrating intra-island differentiation has remained elusive. The Reunion grey white-eye (*Zosterops borbonicus*) is a species complex that harbours four geographically structured forms with abutting ranges on a small and remote volcanic island, providing an interesting system to test for intra-island divergence. We generated genome-wide SNP loci using GBS (Genotyping-By-Sequencing) data from a large sample of individuals and a high-quality genome sequence for the species. Using a population genomic framework as well as phylogenetic inferences, we reconstructed the evolutionary histories of the different forms on Reunion island. We first confirmed the monophyly of the species relative to its sister species *Zosterops mauritianus*. Then, we show that the paraphyly and basal position of one of the lowland forms strongly argues in favour of intra-island divergence. Expansion analyses suggest sequential colonisations from the North to the South of the island. The marked genomic structure found indicates that gene flow between forms is limited and suggests that these forms may be reproductively isolated.

Keywords: intra island speciation, phylogeography, expansion, spatial structure, hybrid classes, La Réunion

Speaker
Human-driven extinctions have erased the evolutionary history of flightlessness in island birds

Ferran Sayol *,† 1,2, Manuel Steinbauer 3, Tim Blackburn 4, Alexandre Antonelli 5,6,7, Søren Faurby 6,8

1 Department of Biological & Environmental Sciences, University of Gothenburg (Bioenv) – Box 461, SE 405-30 Göteborg, Sweden
2 Gothenburg Global Biodiversity Centre (GGBC) – Box 461, SE 405-30 Göteborg, Sweden
3 Geozentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) – Loewenichstr. 28, 91054 Erlangen, Germany
4 University College London (UCL) – Bloomsbury, Londres WC1H 0AG, United Kingdom
5 Department of Biological & Environmental Sciences, University of Gothenburg (Bioenv) – Box 100, SE-405 30 Gothenburg, Sweden
6 Gothenburg Global Biodiversity Center (GGBC) – Box 461, 405 30 Gothenburg, Sweden
7 Royal Botanic Gardens, Kew (Kew) – Richmond, United Kingdom
8 Department of Biological and Environmental Sciences, University of Gothenburg (BioEnv) – Carl Skottsbergs gata 22B, P.O. Box 461 - SE 405 30, Gothenburg, Sweden

While being able to fly is one of the most distinctive traits of birds, several lineages have lost this ability in some environments, such as oceanic islands. If we only consider extant species, the evolution of flightlessness appears to be extremely rare, occurring in only 38 out of more than 8500 species of terrestrial birds. However, these patterns might be biased by anthropogenic impacts, especially by human-caused extinctions on islands. Oceanic islands are peculiar for two reasons, when compared to larger landmasses. First, this is where we expect species to evolve towards flightless forms, due to the general lack of predation. Secondly, islands have the highest proportion of extinctions – up to 90% of recent vertebrate extinctions, according to IUCN. Since flightless birds are particularly vulnerable to new predators, we expect such species to be disproportionately represented amongst extinctions, making it difficult to understand how this trait has evolved if only focusing in extant species. In this study, we aimed to infer the evolutionary history of flightlessness in island colonizing lineages, by reconstructing the community of island birds worldwide before human disturbance. We compiled an exhaustive list of bird species that are known to have occurred on islands but have gone extinct since human arrival, totaling 472 species from 68 families. For those with sufficient morphological data, we estimated flight ability based on wing to hindlimb ratios. We accordingly classified 149 species as flightless or weak-flyers. These species quadruple the list of known flightless birds compared to extant species, and more than double the number of families with flightless representatives (from 11 to 27 known families). If we consider each flightless genus within an archipelago as an independent colonization by a flying ancestor, our data suggest that flightlessness could have evolved at least 100 times in the evolutionary history of birds, which is likely still to be an underestimate considering that the fossil record is highly incomplete. These findings highlight that humans, through non-random extinctions, have dramatically influenced the diversity and distribution of species and their traits, which must be taken into account when trying to understand natural macroevolutionary patterns.

Keywords: Birds, Flightlessness, Extinctions, Anthropogenic biases

*Speaker
†Corresponding author: fsayol@gmail.com
Multiple colonizations and parallel radiations of Peperomia (Piperaceae) on the Hawaiian Islands suggest context-dependent role of niche preemption in diversification on oceanic islands

Junying Lim * 1,2, Charles Marshall 1, Elizabeth Zimmer 3, Warren Wagner 3

1 Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley – Berkeley, California, United States
2 Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam – Amsterdam, Netherlands
3 Department of Botany, Smithsonian National Museum of Natural History – Washington D.C., United States

Niche pre-emption, where earlier arriving lineages may develop ecological and adaptive advantages and thus inhibit the ecological and evolutionary success of later arriving lineages, has been argued to play a dominant role in the assembly of oceanic island floras. On the Hawaiian Islands, for example, most of the iconic and species-rich groups of the archipelago (e.g., silverswords, lobeliads) are each derived from evolutionary radiations from single colonist lineages whereas many species-poor genera are derived from multiple colonization events. Here, using a molecular phylogeny of Peperomia (Piperaceae) in the Pacific, where it is one of the most species-rich angiosperm groups, we reveal a unique history of colonization and diversification in contrast to other elements of the Hawaiian flora and expectations under niche pre-emption. To better resolve the evolutionary relationships of Pacific taxa, we sequence full chloroplast genomes for half of species in the Pacific (including all native Hawaiian species), using a genome skimming next-generation sequencing approach. Using this phylogeny, which we date using a fossilized birth death model of the Piperales, we find that the Hawaiian Islands have been colonized by at least four separate Peperomia lineages from the Neotropics, with most diversification occurring relatively recently in the Pliocene. Most importantly, while the Hawaiian flora provides examples of spectacular radiations from single colonist ancestors (e.g., silverswords, lobeliads), we show that endemic Peperomia taxa on Hawaii are derived from radiations from two distinct colonists, the first documented case among species-rich plant groups of the Hawaiian flora. The diversification of two clades in parallel suggests that ecological release due to the paucity of large native vertebrate herbivores and the relatively open understoreys of Hawaiian wet forests may have allowed both lineages to flourish, and adds a new twist to our understanding of how oceanic island floras assemble.

Keywords: genome skimming, Pacific biogeography, diversification, oceanic island assembly, niche preemption

*Speaker
Towards a comprehensive understanding of Oxera’s island life

Gildas Gâteblé *, Laure Barrabé 1,2, Philippe Birnbaum 1,3, Bryan Drew 4, Yuji Isagi 5, Ayako Izuno 5, Giliane Karnadi-Abdelkader 1, Ryota Kawai 5, Sébastien Lavergne 6, Yoshihisa Suyama 7

1 Institut Agronomique néo-Calédonien (IAC) – Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia
2 Endemia – 3 rue Jules Harbulot, 98800 Nouméa, New Caledonia
3 UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRA, IRD (AMPA) – Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] – UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRA, IRD, 34398 Montpellier, France
4 University of Nebraska-Kearney – Department of Biology, University of Nebraska-Kearney, Kearney, NE 68849, United States
5 Kyoto University – Laboratory of Forest Biology Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
6 Laboratoire d’Ecologie Alpine (LECA) – Centre National de la Recherche Scientifique - CNRS – Laboratoire d’Ecologie Alpine, CNRS - Université Grenoble Alpes, UMR 5553, 38000 Grenoble, France, France
7 Tohoku University – Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yamogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan

Since the introduction of the island life concept by Wallace, isolated oceanic and relatively young islands have been the place to be to study and unravel evolutionary patterns among original groups within the tree of life. In these regards, the quite old New Caledonian archipelago has been relatively neglected despite hosting a world-class biome, perhaps because no definitive cases of adaptive radiation have been detected there thus far. Here we present a detailed analysis of the radiation of the genus Oxera (Lamiaceae) based on a multidisciplinary study including domestication, interspecific hybridization, karyology, anatomy, systematics, phylogenetics, pollination biology, ecology, conservation and population genetics. New Caledonia is the main center of Oxera diversification with about 33 endemic species plus a few more taxa in Papua New Guinea, Australia and Pacific islands. We have shown that Oxera originated from a single and quite recent dispersal event in New Caledonia about 4.5 million years ago, and has successfully established and diversified at an outstanding net rate of up to one species per million years. Establishment and rapid initial diversification of Oxera in New Caledonia was probably facilitated by arid conditions that may have created new biota at the beginning of the Pliocene. Concurrently, Oxera also underwent major shifts in pollination syndromes, dispersal modes and life forms that are now exhibited by its extant major clades. More recently, the drivers of speciation within the main clades are most likely due to allopatry and habitat shifts in relation to climatic oscillations and soil morphogenesis. Ongoing population genetic studies on several species from different clades (e.g. within the monocaulous baladica clade and especially on the Oxera baladica species complex) are highlighting more recent stories, while the complete genome sequencing of a taxon (Oxera pulchella subsp. grandiﬂora) is likely to deepen our outstanding of the past demographic history of several species and/or clades. In fine, we hope the results will be of interest for the conservation of the most critically endangered Oxera taxa.

Keywords: Oxera, New Caledonia, Lamiaceae, radiation, niche shifts, demographic history

*Speaker
Unraveling the stages of ant diversification in Madagascar

Evan Economo *, Nicholas Friedman 1, Francisco Hita Garcia 1, Georg Fischer 1, Bonnie Blaimer 2, Julian Katzke 1, Evropi Toulkeridou 1, Adam Khalife 1,3, Douglas Booher 4,5, Alexander Mikheyev 1,6, Brian Fisher 7

1 Okinawa Institute of Science and Technology (OIST) – 1919-1 Tancha Onna-son Okinawa, 904-0495, Japan
2 North Carolina State University (NCSU) – Raleigh, NC 27695, United States
3 Université Pierre et Marie Curie – Université Pierre et Marie Curie - Paris 6 – 4 Place Jussieu, 75005 Paris, France
4 University of Illinois Urbana-Champaign – Champaign, IL, United States
5 Field Museum of Natural History (FMNH) – 1400 S Lake Shore Dr, Chicago, IL 60605, United States
6 Australian National University (ANU) – The Australian National University Canberra ACT 0200 Australia, Australia
7 California Academy of Sciences – 55 Music Concourse Dr, San Francisco, CA 94118, United States

Evolutionary radiation typically involves the divergence of lineages across geographic, ecological, and phenotypic spaces, but diversification may not happen along these dimensions simultaneously. Indeed, both theory and empirical studies have suggested that radiation may occur in stages, for example with diversification first occurring along climatic gradients and later along body size (or vice versa). This may reflect evolutionary "paths of least resistance"; the relative ease in which species can cross dispersal barriers, evolve across morphospace, and adapt to different climates. However, it is still unclear whether radiations are generally staged, and, if they are, whether the ordering of the stages is general across taxa or highly idiosyncratic. Here, we assemble an unprecedented dataset for ants encompassing the taxonomic, geographic, phylogenomic, and phenomic dimensions of ant biodiversity in Madagascar to analyze the dynamics of diversification across five major ant radiations on the island (total ≈ 500 species). As an isolated mini-continent, Madagascar is both a model system for comparative analysis of diversification and also a critically important region for conservation. Building upon 25 years of intensive ant biodiversity inventory across Madagascar, we analyze the distribution of species across the main geographic regions of the island, across ecoclimatic gradients, and in 3D morphospace as quantified by X-ray microcomputed tomography and 3D geometric morphometrics. Phylogenomic reconstructions show that a small handful of colonizing lineages seeded massive radiations in the five focal genera after colonization. In general, we found evidence of staging in each group, as radiation proceeded along certain dimensions early and others later, rather than a synchronous accumulation of diversity in all dimensions. However, the ordering of these stages varied considerably among taxa, with morphology diversifying first followed later by climatic tolerance in some taxa, while in others the reverse was true. These differences were partially understandable, for example one genus lacks flying queens and showed much more geographic structure to the radiation, but in many cases are enigmatic. These results shed light on the dynamics of adaptive radiation in this biodiversity hotspot, while highlighting questions about why the adaptive potential of different lineages varies so considerably across dimensions of biodiversity.

Keywords: adaptive radiation, ants, Madagascar, diversification, biogeography, morphology

Speaker
Unraveling the history of Apis mellifera in the islands of the South-West Indian Ocean: what we have learned from genetic, genomic, morphometric and ecological approaches

Johanna Clémencet ∗† 1, Julien Galataud 1, Tsiory Mampionona Rasoloarijao 2, Maeva Angélique Techer 3, Henriette Rasoloarivao 2, Alain Vignal 4, Hélène Delatte‡ 2

1 UMR Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT - Université de La Réunion) – Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 SAINT DENIS CEDEX 9, Réunion
2 CIRAD UMR PVBMT – 7, chemin de l’IRAT Ligne Paradis 97410 Saint-Pierre, Réunion
3 Okinawa Institute of Science and Technology Graduate University (OIST) – Ecology and Evolution unit, Okinawa, Japan
4 Institut national de la recherche agronomique [Toulouse] (INRA Toulouse) – Institut National de la Recherche Agronomique - INRA – Chemin de Borde Rouge BP52627 31326 Castanet Tolosan Cedex, France

Honeybees are present on all islands of the South Western Indian Ocean (SWIO), including Madagascar and three surrounding archipelagos (the Comoros, Seychelles and Mascarenes). If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with insular honey bee populations from this hotspot of biodiversity is misunderstood and its ecological role in natural ecosystems still poorly documented. In such a context, the evolutionary history of the species in the SWIO is pertinent to explore. The aims were to (i) characterize the genetic origins and diversity of the insular populations (ii) test whether morphological and genetic divergences among populations correlate and (iii) investigate the ecological role through the study of biotic interactions with the native flora. In collaboration with regional partners, a dataset of more than 4 000 colonies sampled in Madagascar and the 9 surrounding islands were considered for genetic, morphometric and genomic analyses. Mitochondrial screening indicated that insular populations belong to one private African sub-group, but also revealed recent human importation of European subspecies in the Mascarene Islands (Mauritius, Rodrigues, La Réunion). Nuclear DNA analyses highlighted significant genetic differentiations among insular populations from this African sub-group, suggesting ancient colonization events. When confronted, the patterns of genetic and morphological diversification observed were highly congruent both at the inter- and intra-archipelago scales. In Reunion, whole genome sequencing of individuals (n=36) showed admixture between African and European lineages, with however a higher level of A. mellifera unicolor mitotype. Results provide insights into the long- term consequences of introducing exotic specimens on the nuclear genome and indirectly on the morphology of locally adapted populations. Ecological surveys conducted in natural forest ecosystems from Madagascar and La Reunion confirmed the generalist foraging behavior strategy of A. m. unicolor and revealed a significant preference for native floral species. All together, these results shed light on the original diversity of the honeybee in the SWIO and the need to preserve it.

Keywords: adaptation, Apis mellifera, honeybee, insects, Madagascar, molecular evolution, pollination

∗Speaker
†Corresponding author: johanna.clemencet@univ-reunion.fr
‡Corresponding author: helene.delatte@cirad.fr
Evolution of dengue viruses on islands

Shannon Bennett **† 1

1 California Academy of Sciences (CAS) – 55 Music Concourse Dr, San Francisco, CA 94118, United States

Dengue virus is an emerging infectious mosquito-borne disease that has been expanding worldwide in recent decades. Currently over 3.5 billion people are estimated to be at risk to infection, although a disproportionate number are from low-income tropical populations. Many islands are affected by dengue, either supporting dengue endemically or subject to periodic introductions through traveling humans. *Aedes aegypti* is the primary vector, although *Aedes albopictus* and other relatives are potentially important secondary vectors. Dengue, as a fast-evolving RNA virus, has the ability to adapt rapidly to new ecological opportunities. To understand how dengue viruses evolve in different island systems and identify the major drivers that might lead to endemism, we sequenced viruses for their complete genomes and analyzed evolutionary patterns in a phylogenetic framework. Our findings suggest that higher virus population sizes and resultant genetic diversity are important for dengue establishment and long-term evolving populations. Both endemic and introduced dengue can be associated with severe disease epidemics or outbreaks. These results have major implications for understanding how dengue circulation and its sources through human travel impact diseases on islands.

Keywords: borne, dengue, epidemic, infectious disease, mosquito, vector

Speaker

Corresponding author: sbennett@calacademy.org
Social Sciences on Islands

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global law as an analysing tool of climate change adaptation: what relevance for justice assessment of coastal governance?, Anne-Sophie Tabau [et al.]</td>
<td>126</td>
</tr>
<tr>
<td>Addressing the research-management implementation gap at two UNESCO sites in the Seychelles, Frauke Fleischer-Dogley [et al.]</td>
<td>127</td>
</tr>
<tr>
<td>An approach to assess the socio-economic impact of conservation projects, Jose Benedito [et al.]</td>
<td>128</td>
</tr>
<tr>
<td>Breaking the "Poor data poor decision" loop. Strategies to balance geographic data-knowledge biases in marine spatial planning, Ateret Shabtay [et al.]</td>
<td>129</td>
</tr>
<tr>
<td>Legitimacy of the scientific expertise and its media coverage in an island context: analysis of media corpus on the theme of shark risk in La Réunion, Barbara Losen [et al.]</td>
<td>130</td>
</tr>
<tr>
<td>SEGA One Health: planning for the future of effective integrated health surveillance in the Indian Ocean, Said Anli Aboubacar [et al.]</td>
<td>131</td>
</tr>
<tr>
<td>Unpacking the controversies around the management and control of the invasive plant, Rubus alceifolius, in Réunion Island: preliminary elements for a sociological research, Cathleen Cybele</td>
<td>132</td>
</tr>
<tr>
<td>Sacred groves as habitat islands: biodiversity conservation through cultural practices, Alison Ormsby</td>
<td>133</td>
</tr>
</tbody>
</table>
Global law as an analysing tool of climate change adaptation: what relevance for justice assessment of coastal governance?

Anne-Sophie Tabau ⋆† 1, Marie Thiann-Bo-Morel ⋆ 1

1 University of Reunion Island – UMR 228 Espace-Dev, Université de La Réunion, Saint-Denis – 97490 Sainte-Clotilde France, France

This study aims to present ”global law” theories and their usefulness, to highlight the role that law and lawyers may play for Islands governance to be adapted to global changes. Indeed, the hypothesis tested is that global law allows to consider the - otherwise invisible - actors de facto implicated in the rule-making and implementation processes at different levels, from local to global, but also the continuum between ”soft” (or non-binding) and ”hard” (or enforceable) law. In order to do so, the study mobilizes and defines some recent notions, derived from the ecological thinking applied to the law. For example, from a legal analysis perspective, the notion of ”regimes complex” is helpful in order to designate the set of norms, actors and processes involved in islands governance, without being limited in our study by restrictive legal concepts, such as the judicial order, the formal legal value of the norms, or the de jure legitimacy of the actors considered. It permits to include in the study a sociological reading of a set of norms, to understand the circulation of these norms and to characterize them according to the actors who carry them. Adopting the situated point of view that global law recommends, reveals and, thus, may favour the process framing the interactions between various levels, fora and actors of law-making and law-implementation. Indeed, mapping applicable law to a given area or subject matter, like islands governance, actually depends from the point of view of the person answering the question, and the normative project he or she carries. This study main outcome is that global law helps to reveal the ”relative” but also ”dynamic” characters of the law that may frame island governance. Therefore, it allows to assess the existing normative offer, by referring to the sociological framework of justice, to identify accountability gaps of de facto powerful actors, and, more fundamentally, to focus attention on ”connecting needs” to link for instance the issues of coastal governance and adaptation to climate change, or more broadly the issues of environmental and social justice.

Keywords: law, environmental justice, social justice, coastal governance, adaptation to climate change

⋆Speaker
†Corresponding author: anne-sophie.tabau@univ-reunion.fr
Addressing the research-management implementation gap at two UNESCO sites in the Seychelles

Frauke Fleischer-Dogley 1, Nancy Bunbury ∗ 1

1 Seychelles Islands Foundation (SIF) – La Ciotat Building, Mont Fleuri, P.O. Box 853 Victoria, Mahé, Seychelles

There is a much-debated ‘implementation gap’ concerning the application of science to conservation management. The Seychelles Islands Foundation, a public trust which manages the UNESCO World Heritage sites of the Seychelles, provides a strong working example of the diverse ways that researchers and practitioners can work together to change island conservation strategy and policy based on scientific evidence. The sites, Aldabra Atoll, a remote and relatively undisturbed raised atoll in southern Seychelles and the Vallée de Mai, a palm forest on the island of Praslin, differ ecologically and in the conservation challenges they present, but similar evidence-based management strategies are applied at both. Long-term biodiversity monitoring is geared towards assessing trends in their objectively-assessed values, and threats to these values, including (1) population status of endangered/endemic iconic species such as the coco de mer and giant tortoise; (2) distribution and abundance of broader taxa or guilds, such as landbirds, herpetofauna and predatory fish communities; (3) ecosystem-level processes, such as plant phenology, avian breeding success and coral recruitment; and (4) threat status, such as invasive species alien presence and distribution. Most analysis of trends is done internally, and research collaborations are established with experts to resolve complex questions that address conservation needs and require specialised knowledge, such as genetic analysis or advanced statistics. Specific research agreements ensure productive collaboration benefitting all partners, with co-authored papers being the main outputs. The findings and recommendations feed back into site management, facilitating the process of adaptive management. Examples of recent research impacts and management responses at these sites include: (1) substantially extended protected area coverage; (2) amended visitor regulations and policies; (3) informed decisions on invasive species eradications; (4) implementation of a sustainable coco de mer harvesting scheme; (5) zonation of protected area and tightened fishing regulations; (6) regular review and modifications of monitoring methods; and (7) identification of future research priorities. There is room for improvement in the current system, but it largely ensures that monitoring data are analysed, relevant, and incorporated into management. We show that bridging the implementation gap can work in practice when institutional structures and resources are in place.

Keywords: adaptive management, evidence, based conservation, island conservation strategy and policy, biodiversity monitoring, knowledge, action boundary

∗Speaker
An approach to assess the socio-economic impact of conservation projects

Jose Benedicto *, 1, Sandra-Hervías Parejo 2, Azucena De La Cruz 3, Pedro Geraldes 4, Luis Costa 5, Artur Gil 6

1 Consulta Europa Projects and Innovation (CE) – Parque Científico y Tecnológico, Las Palmas de Gran Canaria, 35017, Spain, Spain
2 Institut Mediterrani d’Estudis Avançats (IMEDEA) – C/ Miquel Marquès, 21 - 07190 Esporles, Spain
3 Sociedade Portuguesa para o Estudo das Aves (SPEA) – Av. Columbano Bordalo Pinheiro, 87 1070-062 Lisboa, Portugal
4 Sociedade Portuguesa para o Estudos das Aves (SPEA) – Av. Columbano Bordalo Pinheiro, 87, 1070-062 Lisboa, Portugal
5 MAVA Fondation pour la Nature – Rue Mauverney, 28 1196 Gland Suisse, Switzerland
6 Faculty of Sciences and Technology, Centre for Ecology, Evolution and Environmental Changes – Rua da Mãe de Deus 9500-321 Ponta Delgada, Portugal

Small oceanic islands host unique ecosystems with important rates of flora and fauna endemism. But their ecosystems are also typically threatened by invasive species pressure and human settlement. Conservation projects have ecological and scientific impacts, but as they channel funds to, usually, rural areas they are also positive funding sources to the local economies. Based on the experience of the Safe Islands for Seabirds LIFE project, a methodology to assess the socio-economic impact of a nature conservation project on the local community is presented. The study focuses on the wealth created and the jobs supported directly and indirectly by the project. To assess the impact of the Safe Islands for Seabirds project (Azores, 2009-2012) a combination of methods to analyse the project expenditure, the jobs created directly as a result of it, and, by means of multipliers, the incomes and jobs it supported indirectly was used. During 2009-2012 period a direct expenditure of EUR 344,212.50 from the project increased the gross domestic product of the Azorean region by EUR 206,527.50. In addition to the 4.5 jobs created directly by the project, it also supported indirectly the equivalent of 1.5–2.5 full-time jobs. The project also provided the opportunity to preserve and promote natural amenities important for the quality of life of the local community. Findings show that a nature conservation project can have positive economic impacts, and recommendation is made to the creation of a standardized tool to calculate in a straightforward but accurate manner the socio-economic impacts of conservation projects. Conservation projects make sense on small islands due to their ecological characteristics, but they are also the opportunity to support these isolated and rural economies.

Keywords: conservation project, LIFE, multiplier, protected area, Corvo Island, socioeconomic impact

*Speaker
Breaking the "Poor data poor decision" loop. Strategies to balance geographic data- knowledge biases in marine spatial planning

Ateret Shabtay *, Virginie Plot 2, Gaël Potin 2, Fleur Dargent 3, Erwann Lagabrielle 1

1 University of Reunion Island – UMR ESPACE-DEV – 97490 Sainte-Clotilde France, France
2 University of Reunion Island – UMR ENTROPIE – 97490 Sainte-Clotilde France, France
3 University of Reunion Island – Université de la Réunion – 97490 Sainte-Clotilde France, France

Management of human activities in the marine environment is vital for sustaining the health and function of marine ecosystems. Ecosystem-based management implanted through marine spatial planning (MSP) would ideally allocate human activity in a sustainable perspective. However, data and knowledge on marine environments and human uses at sea often suffer from shortfalls that cause great uncertainty regarding the current and future interactions between marine ecosystems and socioeconomic activities. At the heart of this uncertainty is the data abundance bias between more accessible and emblematic ecosystems and therefore more studied areas versus other areas. These shortfalls are illustrated along the 215 km coast of Reunion Island (Western Indian Ocean) between the well-documented coral reef coasts versus the rocky windward side. We examine the underlying social and technical driving factor to those data gaps and biases. Primary results reveal how the lack of biological and environmental data strongly drive management priorities and produce socio-environmental inequities through a "Poor data poor decision" loop. We propose solution pathways to address these biases in MSP from the early stage of data collection to the advanced stage of proposing spatial management plan. We advise to apply MSP concepts to the zoning of future scientific investigation efforts in the marine geographic space. This study contributes to further development of the theory and practice of addressing data gaps, biases and uncertainty in MSP, especially in distant and/or deep waters compared to coastal waters.

Keywords: Marine spatial planning, marine conservation, ecosystem, based management, data shortfalls.

*Speaker
Legitimacy of the scientific expertise and its media coverage in an island context: analysis of media corpus on the theme of shark risk in La Réunion

Barbara Losen *† 1, Grégoire Molinatti 1, Bernard Idelson 1

1 University of Reunion Island – 97490 Sainte-Clotilde France, Réunion

Since 2011, fatal shark attacks occurred in Reunion Island and led to the "shark crisis", raising up different issues for humanities and social sciences. One of them consists in the links between science and society and particularly the issue related to the legitimacy of the scientific expertise evolving in a context of institutional crisis. From the communication sciences point of view, the evolution of the experts’ legitimacy has never been analysed in the local media discourses. We built a corpus of 1600 articles from the local media LINFO.RE about the theme of shark risk, from 2011 to 2017. We studied this corpus qualitatively through an analysis grid made from argumentation and controversy theories. In addition, we led a quantitative analysis in order to establish the frequency of appearance of discourses about science in relation to the total number of publications about the shark risk. An evolution of the legitimacy of scientific experts has been demonstrated with different turning points of qualifications / disqualifications according to the dynamics of the social context, the actors involved, and their arguments. The number of articles written about the shark risk showed peaks of publications in September 2011, August 2012, July 2013 and April 2015, more often following shark attack events. The frequency of appearance of discourses about science showed a variation in the media coverage according to the arrival of new disqualifying arguments, the publication of expertise reports, or a shark attack occurrence. Our study explores how the scientific discourses circulate in the social field and how they can be transformed and reappropriated by the different actors involved in a socio-scientific controversy. The case of media coverage of "shark crisis" in Reunion Island allows us to discuss the dynamics of the scientific experts’ legitimacy in a socio-historical context.

Keywords: controversy, scientific expertise, shark risk, local media

*Speaker
†Corresponding author: barbara.losen@univ-reunion.fr
SEGA One Health: planning for the future of effective integrated health surveillance in the Indian Ocean

Said Anli Aboubacar 1, Fils Bienvenu Andriamainty 1, Jastin Bibi 1, Eric Cardinale 1, François Chieze 1, Vansantrao Gudjadhur 1, Deodass Meenowa 1, Jimmy Mélanie 1, Gaëlle Ollivier Gouagna 1, Charafouddine Onzade 1, Alain Rakotoarisa 1, Harena Rasamoelina ∗ 1, Bedja Said Ahmed 1, Esther Schelling 1

1 RESEAU SEGA ONE HEALTH (SEGA OH) – COI, Mauritius

Twelve years after the eye-opening Chikungunya epidemic in the Indian Ocean (IO), fuelled by ravaging zoonoses (notably Rift Valley fever) and transboundary animal diseases (FMD, AFS), a charter for a One Health Surveillance and Response network (SEGA One Health) was signed by all IO Commission member States. To strengthen health preparedness, the network’s activities the past eight years included health events monitoring, regular calls and meetings, support of national surveillance systems, outbreak investigations, and response. The Surveillance and Response Unit of the IOC coordinates and plans for sustainability beyond the next few years. Therefore the network needs to capitalize on its past successes, increase visibility, become more analytical and anticipatory, foster cooperation and synergies between health sectors and include progressively daily health threats such as diabetes and food-borne diseases to strengthen the systems. Digital health information systems are implemented for real-time reporting. Adapted surveillance system evaluations and benefit-cost analysis document the performance. Next to technical issues, sub-regional expertise is mobilised and strategic plans elaborated showing the priorities of countries and how they are anchored in national health plans. Transversal topics emerge like port controls, cross-country quality assurance of laboratories, capacity-building, risk analysis and targeted communication. There is a large untapped potential of One Health to enhance early detection and control of zoonoses. Novel contingency planning with all line ministries and cost-effective transsectoral economics for zoonoses are key elements and can be extended to other sectors such as plant health. AMR as emerging topic can showcase One Health when it considers the environmental interface of human and animal health and human mobility. Rabies is a prime example of added value of cooperation. Climate change via ecosystem instability and new patterns of vector abundance (e.g. Aedes and ticks), and increasing extreme weather events are closely related to epidemics. Remote sensing for early alerts is only sufficient if linked to social contexts and behavioural adaptations. Newly created regional excellence centres acknowledge these future challenges. Sub-regional harmonised actions based on mutual learning for change require institutional and operational partnerships – and buy-in and long-term commitment by States - stipulating governance becoming an overarching topic.

Keywords: surveillance, network, Indian Ocean, One Health, vector borne disease

*Speaker
Unpacking the controversies around the management and control of the invasive plant, Rubus alceifolius, in Réunion Island: preliminary elements for a sociological research

Cathleen Cybele *

2 Centre de coopération internationale en recherche agronomique pour le développement - Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical (CIRAD UMRPVBMT) – 7 chemin de l'Irat, Ligne Paradis, 97410, Saint-Pierre, Réunion
1 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion

The perception of invasive plants by citizens is often underlooked in control programs. The management and control of R. alceifolius, the giant bramble, highly invasive in Réunion Island, triggered a great debate among the local community and contributed to diverging opinions about the invasive status of the plant. In 2008, a biological control agent, Cibdela janthina, a phytophagous sawfly was introduced to control R. alceifolius with approval from the French authorities here represented by the state, regional council, ministries, agencies and institutions. The omnipresence of the biological control agent, a blue-metallic looking fly around the island within a year’s time did not go unnoticed and aroused great misunderstanding by the public. A high abundance of C. janthina, commonly called the "blue fly" raised uncertainties of its impact upon litchi honey production among beekeepers. This concern was broadcasted amongst the local community and it received great media attention. The local press published headlines expressing the opinion of beekeepers who voiced out their concerns on the decrease of their honey production to the French authorities. The controversy was reflected around the release of a biological control agent in Réunion island. The aim of this study was to determine the different perceptions of this biological control programme from the French authorities, the beekeepers and the research centre. The emergence of the transformation of disputes was selected to determine the rationale behind the controversies on the biological control programme. The available data analyzed were newspapers, scientific committee meetings reports, decrees and orders. Surveys were also undertaken to understand the various point of views which brought about disputes as part of the biological control programme. The results showed that weak communication and involvement of beekeepers prior to the release of the biological control agent have generated discontentment. The none-involvement of beekeepers during the scientific decisions later generated controversies. The research centre was requested to investigate on the issue of the reported decrease in honey production and concluded that C. janthina had no link with honey production. The research centre has later collaborated with professional beekeepers, as allies, to undertake the study.

Keywords: beekeepers, biocontrol, media, perception
Sacred groves as habitat islands: biodiversity conservation through cultural practices

Alison Ormsby *† 1

1 University of North Carolina Asheville (UNCA) – Environmental Studies, 1 University Heights, Asheville, NC 28804, United States

Sacred groves occur worldwide, and are community-managed forests that are protected due to cultural traditions. These groves harbor important natural resources, including diverse flora and fauna, as well as springs. Some of the sacred groves are considered home to local gods. The sacred groves are often fragmented habitat islands within a landscape mosaic of agriculture and human development. A multi-year, multi-site research programme on sacred natural sites is underway. Results will be presented from research in Ghana in 2006, India in 2009-2010, and Sierra Leone in 2012. A qualitative, ethnographic research methodology was used, including open-ended interviews. A similar semi-structured questionnaire was used in all three research locations to interview residents about natural resource use, rules, and belief systems regarding local sacred groves. Results indicate that management approach and level of community involvement are linked to effectiveness of site protection and community attitudes. Societal traditions are key to the continued protection of the groves. In some cases, changing religious traditions and high demands for resource use have resulted in the reduction or loss of groves. However, culturally protected sacred sites can still play a role as key biodiversity conservation areas if community conservation traditions are supported. The groves’ cultural significance and local management help ensure the future of these forested habitat islands that represent key remaining biodiversity conservation areas.

Keywords: forest conservation, social science, indigenous and community conserved areas, traditional conservation practices, CBNRM

*Speaker
†Corresponding author: ormsbyaa@gmail.com
Island palaeontology (Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island life before Man, Alexandra Van Der Geer [et al.]</td>
<td>135</td>
</tr>
<tr>
<td>Pleistocene-Holocene environmental changes on Madagascar and associated extinctions, Steven Goodman</td>
<td>136</td>
</tr>
<tr>
<td>Quaternary extinction of large rainforest herbivores on Indonesia’s largest island, Sumatra, Julien Louys [et al.]</td>
<td>137</td>
</tr>
<tr>
<td>Early colonisation of the Philippine islands, Thomas Ingicco [et al.]</td>
<td>138</td>
</tr>
<tr>
<td>How long would it take to recover the number of bird species lost due to humans in New Zealand?, Luis Valente [et al.]</td>
<td>139</td>
</tr>
</tbody>
</table>
Island life before Man

Alexandra Van Der Geer *, 1, Mark Lomolino 2, George Lyras 3

1 Naturalis Biodiversity Center (Naturalis) – Vondellaan 55, Netherlands
2 State University of New York (SUNY-ESF) – 240 Illick Hall 1 Forestry Drive Syracuse, NY 13210, United States
3 National and Kapodistrian University of Athens (NKUA) – Panepistimiopolis 15784 Zografos, Greece

Island biodiversity is changing locally and globally, but at present we have insufficient knowledge of time-series data to assess the degree, nature and consequences of these changes. Nearly all our knowledge on insular biodiversity patterns is derived from studies of extant faunas, which are partly artefacts of ancient colonisations by humans and their commensals. The fossil record provides the necessary baseline to detect and evaluate change and test hypotheses. We tested three models of island biogeography theory: the island rule of body size evolution, the species-area relationship (SAR) and the species-isolation relationship (SIR). We assembled data on body mass and island characteristics, including time, for over 1800 populations of non-volant mammals (including 63 fossil endemic species and 56 introduced species) across 285 islands. We further compiled the number of mammalian species for 36 oceanic islands at colonisation, after speciation and after human arrival to assess the impact of speciation and humans on the native assemblages. The island rule is indeed a pervasive pattern in mammals, exhibited across a broad span of geographical regions, time periods and for introduced as well as native populations. Body size shifts are much more pronounced for populations with greater residence times on the islands. Body size of insular populations is negatively correlated with number of co-occurring mammalian species, confirming an ecological hypothesis of the island rule. We also found that biodiversity patterns for founder populations were consistent with both SAR and SIR, with biodiversity increasing with area and decreasing with isolation. However, resulting biodiversity, that is, after speciation took place, were anomalous, with steep log-log slopes of SAR, and no sign of SIR. Further, anthropogenic introductions have inflated species richness on many islands far above that predicted by SAR theories. We argue that models of island biogeography should include the effects of five processes: immigration, extinction, speciation, time and the impact of human activities.

Keywords: Pleistocene, mammals, fossil record, species, area relationship, island rule
Pleistocene-Holocene environmental changes on Madagascar and associated extinctions

Steven Goodman *† 1,2

1 Association Vahatra – BP 3972, Antananarivo, Madagascar
2 Field Museum of Natural History (FMNH) – 1400 South Lake Shore Drive, Chicago, United States

On the basis of the late Pleistocene-Holocene fossil record, Madagascar underwent important climatological changes, which in turn had a dramatic impact on the island’s ecosystems and the different organisms they held. These vicissitudes led to the extinction or range contraction of a considerable number of endemic land vertebrates. Subsequently, people colonized the island, further extenuating ecological shifts, which resulted in further extinctions. The main objective is to better understand the processes that led to environmental change in the late Pleistocene-Holocene. Over the past decade, new paleontological and archeological sites have been excavated and studies including, for example, inference from stable isotopes to speleothem analyses have been conducted, which provide new refinement on the impacts of these different events and causes on the island’s ecosystems. Further, the date of initial human colonization has been pushed back several millennia and there is good evidence of a Neolithic culture. In the context of this presentation, a synthesis is presented of these different lines of evidence, which in turn provide new insights into the question as to what happened, the time-scale, and separating natural climatic change versus human-induced.

Keywords: Madagascar, late Pleistocene, Holocene, natural change, human induced change

*Speaker
†Corresponding author: sgoodman@fieldmuseum.org
Quaternary extinction of large rainforest herbivores on Indonesia’s largest island, Sumatra

Julien Louys *, Yahdi Zaim, Gilbert Price, Yan Rizal, Aswan Aswan, Mika Puspaningrum, Agus Trihascaryo, Penny Higgins, Patrick Roberts

1 Australian Research Centre for Human Evolution (ARCHE) – Griffith University, Australia
2 Faculty of Earth Sciences and Technology – Institut Teknologi Bandung, Bandung, Indonesia
3 School of Earth and Environmental Sciences – The University of Queensland, Australia
4 Earth and Environmental Sciences – University of Rochester, Rochester, New York, United States
5 Max Planck Institute for the Science of Human History – Max Planck Institute, Jena, Germany

Sumatra is the world’s sixth largest island, and Indonesia’s largest. It hosts 201 mammal species, of which nine are endemic to mainland Sumatra, fourteen to Mentawai islands, and 22 found nowhere else in Indonesia. Unlike other major islands in Southeast Asia, it records very few Quaternary extinctions. Here, we report the first globally extinct taxon from the island. *Hexaprotodon*, the Asian hippo, is represented by the anterior portion of a second lower molar as well as some canine fragments. These were recovered from Ngalau Gupin, a cave site in the Padang Highlands. A tapir molar from the same site has been dated to at least 45,000 years old by uranium series dating. Other than the hippo, the banteng, the buffalo, and the Javan rhino became extirpated from the island, probably sometime in the historical period. Examination of carbon and oxygen isotope values from fossil and modern large mammal communities show no significant differences in either isotope (Mann-Whitney U: carbon U=1666, p=0.1704; oxygen U=1855, p=0.759). This suggests there have been no significant ecological shifts over the Pleistocene at the resolution of these proxies. Unlike other Quaternary extinction events on islands, the largest herbivore on the island is still extant, suggesting that anthropogenic overkill alone is unlikely to be responsible. We suggest that an interplay between decreased carrying capacity, increased hunting, and separation from Southeast Asian source populations may have adversely affected the large, but not medium or very large, herbivores on this island.

Keywords: Padang highlands, Asian hippo, fossil, palaeontology, megafauna

Speaker
Early colonisation of the Philippine islands

Thomas Ingicco *,† 1, Pierre-Olivier Antoine 2

1 Muséum National d’Histoire Naturelle (MNHN) – UMR 7194 - Histoire Naturelle de l’Homme Préhistorique – 57, rue Cuvier - 75231 Paris Cedex 05, France
2 Université de Montpellier (UM) – UMR ISEM – 163 rue Auguste Broussonnet - 34090 Montpellier, France

Past dispersal patterns of terrestrial vertebrates towards and within the Philippine archipelago remain a widely debated topic. As none of these islands has ever been connected to mainland Southeast Asia, even during the most severe quaternary sea level drops, the question of ancient island hopping is still controversial. A West-East main flow from Borneo via Palawan Island seems preferred by scholars nowadays while older studies were favoring a North-South way from China via Taiwa – this latter island being connected to the continent during some glacial periods while the whole Philippines were not. An almost complete skeleton of the controversial "Rhinoceros philippinensis" von Koenigswald, 1956" was recently discovered at Kalinga site (Northern Luzon) from a 709±68 kya archeological layer along with butchery marks and lithic artefacts. This early Middle Pleistocene individual considerably adds to the knowledge of the Philippine rhinocerotid species. The completeness of the specimen further allows us to test the different phylogenetic and subsequently paleobiogeographic scenarios at hand. 309 cranio-mandibular, dental, and postcranial characters robustly support the unsuspected existence of a Southeast Asian Pleistocene clade, including the Philippine rhino. It is closely related to the Sumatran rhino + Rhinoceros clade and groups Rhinoceros fusuiensis from Asian mainland and Rhinoceros hayasakai from Taiwan. Our phylogenetic results strongly suggest an island-hopping dispersal hypothesis for this clade, from China toward Luzon via Taiwan by early Pleistocene times. The phylogenetically-constrained reconstructed body mass and gracility of the new rhino genus clearly points to a tendency to dwarfism from the continental species present in China, through the continental island species on Taiwan and until the oceanic island species in the Philippines. This rhino is the first perissodactyl supporting the island rule hypothesis, with body weight and limb bone robustness significantly decreasing from Asian mainland to Luzon.

Keywords: Rhino, Kalinga, early middle Pleistocene

*Speaker
†Corresponding author: ingicco@mnhn.fr
How long would it take to recover the number of bird species lost due to humans in New Zealand?

Luis Valente *† 1,2, Etienne S. Rampal 3, Juan C. Garcia-R. 4

1 Naturalis Biodiversity Center – Darwinweg 2, 2333 CR Leiden, Netherlands, Netherlands
2 Museum für Naturkunde [Berlin] – Invalidenstraße 43, 10115 Berlin, Germany
3 University of Groningen [Groningen] – PO Box 72, 9700 AB Groningen, Netherlands
4 Massey University – Palmerston North, Auckland (Albany), Wellington, New Zealand, New Zealand

People sometimes believe that, if left undisturbed, nature will quickly recover to its original state. If ecosystems on islands were left alone, how long would it take to recover the number of species lost due to anthropogenic activities? While the number of extinct or threatened avian species has often been quantified, the macroevolutionary consequences of human impact on island biodiversity have rarely been measured. We estimate the time it takes to regain the bird diversity that has been lost or is under threat due to anthropogenic activity in a classic example, New Zealand. Half of its bird species have gone extinct since humans arrived and a large proportion are threatened, including entire lineages forming highly distinct branches in the avian tree of life. Using paleontological and ancient DNA data, we compiled the first complete phylogenetic dataset of a large insular terrestrial avifauna. We extend the maximum-likelihood method DAISIE developed for island biogeography to allow for the conspicuous fact that many of New Zealand’s birds are evolutionarily isolated, and use it to estimate natural rates of speciation, extinction and colonization. Simulating under a range of extinction scenarios, we find that it would take at least 40 million years (Myr) to recover the diversity lost since human colonization of New Zealand and up to 10 Myr to return to today’s levels if currently threatened species go extinct. This study puts into macroevolutionary perspective the impact of humans in an isolated fauna and reveals how conservation decisions we take today will have repercussions for million years to come.

Keywords: Palaeontology, Evolution, Phylogeny, Extinction, New Zealand, Conservation, Birds

* Speaker
† Corresponding author: luisvalente@gmail.com
Island Biogeography, macroecology, evolution and conservation of marine organisms (Symp.)

Contents

Marine island biogeography: an overview of patterns and mechanisms involved in endemism and community assembly, Sergio Floeter 141

Evolution and biogeography of marine organisms on seamounts and oceanic islands, Hudson Pinheiro [et al.] ... 142

Reef fish endemism and functional diversity in oceanic islands, Juan Pablo Quimbayo 143

The rise of politics-based marine conservation in oceanic islands, Luiz Rocha 144

Marine lakes: A view of what is possible in marine islands, Michael Dawson 145

Fish as indicators of biodiversity change in coral reefs of the Indian Ocean, Melita Samoilys [et al.] ... 146

Temporal patterns of reef fish communities in South Atlantic oceanic islands, Carlos Eduardo Ferreira ... 147
Marine island biogeography: an overview of patterns and mechanisms involved in endemism and community assembly

Sergio Floeter * 1

1 Universidade Federal de Santa Catarina – Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil

In contrast to terrestrial species, marine species have received little attention in studies of island theory. However, in recent years, studies concerning the biogeography, macroecology, and evolution of marine organisms living in islands gained momentum. I will show recent results that highlight the different processes ruling marine versus terrestrial biodiversity, mainly due to major differences in species mobility and colonization potential. I will present advances on theoretical ideas and real data examples to demonstrate: 1) the effects of sea-level dynamics on speciation processes on islands and seamounts, 2) global patterns of paleo and neo-endemism, and 3) archipelagos as functional islands for marine organisms - with focus on Cape Verde Archipelago. I will also bring functional and phylogenetic perspectives (i.e. the effects of environmental filtering, competitive exclusion or neutral mechanisms) on community assembly and endemism of marine island biotas, thus giving context to the other talks of the symposium.

Keywords: functional traits, oceanic islands, marine organisms, speciation, sea, level

*Speaker
Evolution and biogeography of marine organisms on seamounts and oceanic islands

Hudson Pinheiro 1, Giacomo Bernardi 2, Thiony Simon 3, Jean-Christophe Joyeux 3, Raphael Macieira * 4, João Luiz Gasparini 3, Claudia Rocha 1, Luiz Rocha 1

1 California Academy of Sciences – 55 Music Concourse Dr, United States
2 University of California Santa Cruz – 1156 High St, Santa Cruz, CA 95064, United States
3 Universidade Federal do Espírito Santo (UFES) – Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES, 29075-910, Brazil
4 Universidade Vila Velha (UVV) – Rua Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, Brazil, 29102-770, Brazil

Islands are natural laboratories for evolution and biogeography studies. From MacArthur and Wilson to present days, understanding processes such as dispersion, extinction, speciation and immigration is key to elucidate current patterns of islands biogeography. However, these processes have been better investigated for terrestrial/aerial than for marine organisms, for which oceanographic features (e.g., currents, tides) and marine geologic processes (e.g., bioconstruction) limit the analogy between these two realms. Thus, we aimed to review the Island Biogeography Theory in light of marine organisms, to test how species evolutionary history fits theory. We analyzed the evolutionary history of reef fishes that are endemic to Vitória–Trindade Chain (VTC), in the south Atlantic Ocean, to understand their relations to island evolution and sea-level fluctuations. We found that most endemic species, intertidal and cryptobenthic reef fishes, have evolved recently, during recurrent sea-level changes of the Pleistocene epoch where repeated aerial exposure of seamounts provides intermittent connectivity. The pattern is consistent with an ephemeral ecological speciation process. The speciation rate for marine organisms on islands is negatively correlated with immigration rate, similar to findings for terrestrial biodiversity. However, dispersion process is easier for marine species than for terrestrial ones, most niches are filled by immigration and speciation increases with the random accumulation of species with low dispersal ability, with few opportunities for in situ cladogenesis and adaptive radiation. Overall, as the geological history of islands proceeds, they lose terrestrial area by erosion but gain marine area through deposition of eroded material and bioconstruction. This process could represent more spaces for niche accommodation. Thus, marine speciation rates in oceanic islands seem to increase not only with isolation but also over time. Moreover, we confirm that sea-level fluctuations and seamount presence play critical roles in marine evolution, mainly by intermittent providing connection (i.e., stepping-stones process) for island colonization.

Keywords: endemism, Pleistocene, reef fish, sea level fluctuations, speciation

*Speaker
Reef fish endemism and functional diversity in oceanic islands

Juan Pablo Quimbayo ∗† 1

1 Center for Marine Biology, University of São Paulo (CEBIMar) – Rodovia Manoel Hypólito do Rego, km. 131,5 - Pitangueiras - São Sebastião - SP - Brazil - CEP 11612-109, Brazil

Factors affecting species composition on islands have been the subject of considerable research, resulting in a broad understanding of assembly patterns in terrestrial communities. Conversely, our understanding of the factors that shape the diversity of marine organisms in islands is still scarce. This lack of knowledge is more evident when we try to infer on processes promoting speciation since marine populations remain highly connected due to its planktonic dispersion. In this sense, endemic species are fundamental study cases/units to unravel and interpret the ecological and evolutionary processes shaping the structure of marine communities on islands. Using a dataset derived from reef fish checklists for 75 tropical oceanic islands distributed across six marine biogeographic regions, we first evaluated the relative role of historical, biogeographical and environmental factors in shaping reef fish endemism patterns. We then quantified how functional diversity and functional originality differed between endemic and non-endemic species pools. We found that the proportion of endemic species is influenced mainly by biogeographic (e.g., isolation, area) and historical factors (e.g., island age, distance from Quaternary refugia, past coral area). The proportion of endemic species was indeed found to be higher in islands that were more distant from Quaternary refugia and in regions with low species richness, such as the Eastern Pacific and Eastern Atlantic. This is possibly an outcome of the low connectivity between these islands and past refuges during the Quaternary climatic oscillations, which may have prevented the re-colonization of species after extinction events. We also found that non-endemic species have greater functional richness when compared to endemic species, while endemics have greater functional originality. Island endemics and non-endemics were also found to differ in their life-history traits: endemic species are mainly smaller, whereas non-endemics occupy all body size classes. These results provide new insights into the patterns and processes relative to reef fish endemism and functional diversity in oceanic islands.

Keywords: island biogeography, functional originality, life, history traits, environmental filtering, historical factors

∗Speaker
†Corresponding author: quimbayo.j.p@gmail.com
The rise of politics-based marine conservation in oceanic islands

Luiz Rocha * 1

1 California Academy of Sciences (CAS) – GOLDEN GATE PARK 55 MUSIC CONCOURSE DRIVE SAN FRANCISCO, CA, 94118, United States

Every marine conservation biologist is familiar with the term “science-based conservation”, which applies to processes where conservation management actions and policy making are driven by scientific evidence. For example, the scientific way to determine the best place and shape for a marine protected area often involves conducting detailed biodiversity surveys and identifying critical habitat, such as nurseries, spawning areas, and migration corridors. On the opposite side of the spectrum is “politics-based conservation”: the process by which conservation policy making is entirely driven by conflict avoidance. In this case, the decisions about where to place a marine protected area or how big it should be always starts by excluding areas that are heavily used by fishers, the oil and gas industry, tourists, etc, thus avoiding conflict. Here I will show that, contrarily to what is always portrayed by the media, every large marine protected area created over the past 10 years has followed a politics-based rather than a science-based approach. These MPAs are often centered around oceanic islands and don’t include coastal protection, but rather, only open-ocean protection, and are being used to meet arbitrary international targets for conservation. Therefore, they remove the pressure for any further conservation measures without actually protecting anything, and their creation has the potential to do more harm than good to biodiversity in the long run.

Keywords: marine protected areas, Aichi targets

*Speaker
Marine lakes: A view of what is possible in marine islands

Michael Dawson *† 1

1 University of California, Merced – 5200 North Lake Road, Merced, CA 95343, United States

Marine lakes are bodies of seawater entirely surrounded by land. Physically, they fit the definition of habitat islands and, syntactically, they are a simple transposition from the definition of true islands. To what extent might these superficial similarities actually indicate shared biogeographic processes? And to what degree could any shared processes lead to ecological and evolutionary patterns in marine inhabitants of islands that we have long considered hallmarks of terrestrial taxa inhabiting islands? Here, I summarize our ongoing research in marine lakes of the Indo-West Pacific to explore these topics. I draw upon work conducted at scales from tens-of-meters to thousands-of-kilometers across three archipelagos, and from days to decades up to decamillenia, including representatives of most common marine phyla, to examine patterns within and among populations, communities, and species. We find evidence of a great variety of patterns: isolation and eurymixis, stasis and rapid evolution, convergence and divergence, neutral and non-neutral. Some of these are reminiscent of patterns familiar in coastal and open oceans, others are reminiscent of island biogeography and island evolution. I infer these patterns include the results of different balances of drift, gene flow, and selection that are influenced by interactions between the geographic setting, environment, and biology of species. Albeit emerging evidence, these findings raise the prospect of a continuum of process and pattern integrating marine with terrestrial perspectives, both of which may be enriched by the other. Marine island biogeography is in its infancy; it may present situations that are uncommon in the existing literature, but not rare in nature, and thus contribute substantially to a new dynamic outlook on a half century-old theme. Better understanding of the level of overlap of marine and terrestrial island and island-like systems will be facilitated by three advances: (1) development of many descriptive marine studies to reduce the current deficit, (2) design of rigorous comparative studies within and across realms, and (3) modification of conceptual models to accommodate seemingly disparate situations.

Keywords: community ecology, environment, marine, phylogeography, speciation

*Speaker
†Corresponding author: mdawson@ucmerced.edu
Fish as indicators of biodiversity change in coral reefs of the Indian Ocean

Melita Samoilys ∗† 2,1, Ronan Roche 3, Kennedy Osuka 4, Andrew Halford 5, David Obura 4, Mishal Gudka 4, James Mbuga 4, Gwilym Rowlands 6, Lorenzo Alvarez-Filip 7

2 Department of Zoology – University of Oxford, Oxford, OX1 3PS, United Kingdom
1 CORDIO East Africa (CORDIO) – Nairobi, Kenya
3 School of Ocean Sciences, Bangor University – Menai Bridge, Anglesey, UK, United Kingdom
4 CORDIO East Africa (CORDIO) – Mombasa, Kenya
5 South Pacific Community (SPC) – Noumea, New Caledonia
6 University of Oxford [Oxford] – Oxford OX1 2JD, United Kingdom
7 Universidad Nacional Autónoma de México – Mexico City, Mexico

"Fish abundance and diversity" is one of ten Essential Biodiversity Variables (EBVs) used for global ocean assessments, recognizing their importance in trophic pathways in all marine systems. Selecting EBVs for coral reef ecosystems is challenging because of their high inherent variation, particularly for fishes. Here we measured the species diversity, density and size of fish species at reefs in Comoros, Madagascar, Mozambique, Tanzania and Chagos, together with 16 bio-physical variables for each site, to develop a model that tests the sensitivity of reef fish indicators and hence their potential as coral reef EBVs. The analytical approach used space rather than time to represent the wide range of reef conditions across the western Indian Ocean. We first modelled diversity, density and biomass of fish species to determine which bio-physical variables were significant in determining fish assemblages. Geographic location and reef geomorphology were the most significant drivers, explaining 32% of the observed variation in densities and biomass. Species richness also varied geographically with Comoros being the least diverse. Fishing effects only became significant, explaining 6% of variation in biomass when data were analysed at smaller spatial scales. Only in Chagos, with zero fishing pressure and relatively homogeneous geomorphology, did live coral cover correlate with fish assemblage structure. The second analysis used PCA to try to condense key benthic variables and found benthic attributes delineated clearly across two primary PCA axes (48% of total variation): i) from high turf algal cover to exposed sites with high CCA cover; ii) from high coral cover and rugosity to high fleshy algal cover and rubble.

This provides a matrix for preliminary modelling which is now testing how responsive are different aggregate fish indicators to variation in environmental conditions and anthropogenic pressures. This paper shows that different geographic / morphological reef systems support different fish assemblages. The broad spatial approach enabled a wide range of benthic variables to be simplified into two values per site and provides the basis for testing commonly used aggregate fish indicators. These results can contribute to the development of global fish EBVs and to biodiversity targets set by the CBD.

Keywords: indicators, reef fishes, monitoring, essential biodiversity variables (EBVs)

∗Speaker
†Corresponding author: melita.samoilys@gmail.com
Temporal patterns of reef fish communities in South Atlantic oceanic islands

Carlos Eduardo Ferreira * 1

1 Associate professor (UFF) – Niterói, Rio de Janeiro, Brazil

Worldwide marine systems have clear records of intensive human exploration causing serious habitat degradation with consequently high rates of ecosystem functional loss. In this scenario, oceanic islands via their isolation and comparative less anthropogenic influence emerge as landmarks of what we can call as the last marine pristine areas. On the other hand, studies on the terrestrial realm of oceanic islands were the baseline for the understanding of the bioinvasion science, providing iconic examples of plant and animal extinction. However, the marine science in oceanic islands is poorly developed, with few examples from the intertidal and much less from the subtidal. As islands sustain small subsets of the regional biodiversity, with high rates of endemism and expected low functional redundancy among species, the vulnerability of extinction caused by human impacts is comparatively higher. Temporal data from long-term ecological research help us better understand marine organisms in islands (i.e. community assembly over time), as well as their conservation. We will show temporal trends of reef fish abundance and richness from four Brazilian oceanic islands, which vary in isolation, area and human influence. Our methods include seven years of visual census to estimate abundance and biomass of reef fishes. Protection and human use as usual are the main variables explaining change in abundance through time of large species of groupers and parrotfishes. Modelling temporal trajectories of community descriptors showed that some trophic groups were influenced by variations in temperature and primary productivity along the years. The understanding of marine community dynamics as well as management strategies are highly dependent on long term monitoring programs.

Keywords: Brazilian oceanic islands, functional redundancy, long term ecological research, trophic groups

*Speaker
Future steps to fight against invasive species on islands
(Symp.)

Contents

The new IUCN Guidelines for invasive species planning and management on islands, Alan Tye [et al.] 149
Island Biodiversity in the Anthropocene, James Russell [et al.] 150
Predicting and preventing the arrival of invasive non-native species on islands globally, Helen Roy [et al.] 151
The "French Connection": lessons learned from the management of invasive plants in French Overseas Tropical Island Territories, Jean-Yves Meyer [et al.] 152
Past, present and future of invasive alien species on the Macaronesian islands, Marta Lopez-Darias [et al.] 154
Activities to avoid or mitigate negative impacts of invasive species are seen as high priority on islands. A new IUCN publication provides guidelines for such activities. It is available in three languages: English, French, and Spanish. The talk will focus on and provide examples for the aims of the guidelines which are designed to assist anyone planning and programming invasive species management on islands. These aims are, i.a., to provide a comprehensive framework for invasive species management on islands, address all problem areas and facilitate prioritisation, increase action and improve implementation, increase efficiency and cooperation and reduce duplication, guide the work of international and regional agencies incl. donors, guide the development of country and island programs, including National Invasive Species Strategies and Action Plans and individual agency plans, and guide strategic and local fundraising. The two sections of the guidelines will also be presented: a ‘Checklist’ section and a ‘How to’ section. The Checklist section presents essential components of a comprehensive and effective invasive species management program, arranged in ten Thematic Areas, and grouped into three overall Themes (Foundations; Information and Prioritization; Management Action). All 10 Thematic Areas need to be considered when planning an invasive species programme for an island or islands. The ‘How to’ section, provides supplementary guidance on the planning and implementation process, mainly on how to engage, build momentum and support, make decisions, prioritise, and translate plans into action. The Guidelines may be used at a local, national or regional level. Best practice example for the utilization of the Guidelines are shown, because not every country or agency needs to do everything. The Guidelines facilitate prioritisation by country, territory, island or agency, and help to ensure that key aspects relevant to any given situation or programme are not forgotten. As objectives are not prioritised, each stakeholder can select those objectives that it considers important for its own programme. Based on a "user-focussed" presentation, the utilization of the Guidelines for the mitigation of negative impacts of invasive species on islands in-situ and ex-situ shall be encouraged.

Keywords: invasive alien species, management actions, ex situ / in situ conservation

Speaker

Corresponding author: michael.kiehn@univie.ac.at

sciencesconf.org:ib2019:252702
Island Biodiversity in the Anthropocene

James Russell * 1, Christoph Kueffer *

1 University of Auckland – Private Bag 92019, Auckland, 1142, New Zealand
2 Swiss Federal Institute of Technology – Rämistrasse 101, 8092 Zürich, Switzerland

Biodiversity on oceanic islands is characterised by unique biogeographic, phylogenetic and functional characteristics. Islands hold a disproportionate amount of the world’s biodiversity, and they have also experienced a disproportionate loss of it. Following human contact island biodiversity has sustained negative human impacts increasing in rate and magnitude as islands transitioned from primary, through secondary to tertiary economies. In contrast to continents, on islands habitat transformation and invasive species have historically been the major threats to biodiversity, and although these threats will continue in new forms, new impacts such as climate change are emerging. Islands thus are microcosms for the emerging biodiversity and socioecological landscapes of the Anthropocene. Islands will require novel strategies for their protection and restoration, including mainstreaming biodiversity in cultural and production landscapes and incorporating novel ecosystems, but they present great opportunities to do so.

Keywords: Anthropocene, biodiversity, nature conservation, novel ecosystem, invasive species, oceanic island

Speaker
Predicting and preventing the arrival of invasive non-native species on islands globally

Helen Roy *,† 1, Jodey M. Peyton 1, Oliver L. Pescott 1, Tim Adriaens 2, Elizabeth Cook 3, Wolfgang Rabitsch 4, Elena Tricarico 5, Kath Turvey 1, Gillian Key 6, Niall Moore 6, Danielle Frohlich 7, Chris Malumphy 8, Kelly Martinou 9, Wayne Dawson 10

1 Centre for Ecology and Hydrology [Wallingford] (CEH) – Maclean Building Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
2 Research Institute for Nature and Forest – Brussels, Belgium
3 Scottish Association for Marine Science (SAMS) – Oban, Argyll, PA37 1QA, United Kingdom
4 Umweltbundesamt GmbH/Environment Agency Austria – Spittelauer Lände 5, 1090 Wien, Austria
5 University of Florence – Piazza San Marco4-50121 Firenze, Italy
6 Non-Native Species Secretariat – York, United Kingdom
7 SWCA Environmental Consultants – Hawaii, United States
8 Fera – York, United Kingdom
9 JSHU – Akrotiri, Cyprus
10 University of Durham – Durham, United Kingdom

Biological invasions can threaten biodiversity and ecosystems, particularly through their interactions with other drivers of change. There are many examples of the adverse effects of invasive non-native species from islands which seem to be particularly vulnerable to the threat of biological invasions. It is widely recognised that preventing the most damaging invasive non-native species arriving within a new region is the most effective management strategy. However, predicting invasions is difficult. Horizon scanning, the systematic examination of future potential threats and opportunities, leading to prioritization of invasive non-native species threats, is seen as an essential component of invasive non-native species management. We developed an approach which coupled consensus methods (which have previously been used for collaboratively identifying priorities in other contexts) with rapid risk assessment. The process involved two distinct phases: 1. Preliminary consultation with experts within distinct groups (plants, invertebrates, vertebrates and marine species) to derive ranked lists of potential invasive non-native species. 2. Consensus-building across expert groups to compile and rank the entire list of potential invasive non-native species. Over the last year we have implemented this approach across the UK Overseas Territories, many of which are islands. For each island, or island group, we have collaboratively developed lists of invasive non-native species predicted to be a priority because of their high probability of arrival, establishment and subsequent impacts on biodiversity and ecosystems, human health or economies. We have demonstrated the critical importance of cross-boundary collaborations to ensure knowledge on invasive non-native species is shared between regions, and to advance understanding and enable successful implementation of strategies, such as pathway action planning, to manage invasive non-native species. In this talk I will provide insights into the outcomes of the horizon scanning including the importance of collaborations and effective engagement. The networks established and advances in understanding achieved through collaborative research such as this have benefits for people, science and nature.

Keywords: citizen science, ecosystems, Horizon scanning, impact, prioritisation

*Speaker
†Corresponding author: hele@ceh.ac.uk
The "French Connection": lessons learned from the management of invasive plants in French Overseas Tropical Island Territories

Jean-Yves Meyer ∗† 1, Yohann Soubeyran‡ 2, Christophe Lavergne§ 3, César Delnatte¶ 4

1 Délégation à la Recherche, Gouvernement de la Polynésie française – B.P. 20981, 98713 Papeete, Tahiti, French Polynesia
2 Comité français de l’UICN, UMR AMAP, Université de Montpellier, CIRAD, CNRS, INRA, IRD – UICN-France, UMR AMAP – Parc scientifique Agropolis, 34398 Montpellier, France
3 Conservatoire Botanique National et Centre Permanent d’Initiatives pour l’Environnement de Mascarin (CBNM-CPIE) – 2 rue du Père Georges, 97436 Saint-Leu, Réunion
4 Office National des Forêts (ONF) – 78 route de Moutte, 97207 Fort-de-France, Martinique

The French Overseas Territories comprise 11 tropical islands or archipelagoes located in three different oceans (Atlantic, Indian and Pacific), ranging from small atolls to high volcanic islands and from oceanic to semi-continental islands, located within the boundaries of 5 of the 36 global biodiversity hotspots. Their unique and speciose flora (with a total of more than 3,340 endemic vascular plants) is highly threatened by direct and indirect anthropogenic impacts, including alien plant invasions. A total of nearly 300 plant species invading natural and semi-natural ecosystems (excluding weeds in agrosystems) are currently documented from these island territories, with about 30% of them found in 3 territories or more. They include the small tree *Leucaena leucocephala* (in 8 island territories), the water hyacinth *Eichhornia crassipes* (in 6 of them), the succulent herb *Kalanchoe pinnata*, the erect subshrub *Furcraea foetida*, the thorny shrub *Lantana camara* and the tree *Syzygium jambos* (in 5), and the African tulip tree *Spathodea campanulata* (4). Other dominant invaders, such as the strawberry guava *Psidium cattleianum* (3), the melastomes *Clidemia hirta* and *Miconia calvescens* (3) and the large erect herb *Hedychium gardnerianum* (1) are particularly invasive in rainforests and montane cloud forests. Since 2005, The French Overseas Invasive Alien Species Initiative (’’Initiative sur les Espèces Exotiques Envahissantes en Outre-Mer ’’) of the IUCN French Committee, allowed the creation of a network of local experts, the publication of invasive species management guides, and a dedicated website. Management efforts have greatly benefited from experiences and lessons learned in the different island territories. As an example, well-tested strategies and methods are used to control the small tree *Miconia calvescens* (Melastomataceae) introduced in the 30’s in French Polynesia, the 60’s in New Caledonia, and the 80’s in Martinique. Regional collaborations with other neighboring tropical islands (e.g. Comoros, Mauritius and Seychelles in the Indian Ocean, Fiji and Hawai’i in the Pacific, the Caribbean Islands in the Atlantic) are also important, as they share the same insular challenges. In particular, it could help to prevent further invasions by using common risk assessment, early detection and rapid response systems.

Keywords: invasive plants, management strategies, control methods, network, Miconia
Invasive species management in the French Southern and Antarctic Lands (TAAF): past efforts and future challenges

David Ringler*, Aymeric Bodin, Lise Chambrin, Solenne Maillot, Clément Quetel, Sophie Marinesque, Cédric Marteau

1 Terres australes et antarctiques françaises (TAAF) – rue Gabriel Dejean 97410 Saint Pierre, Réunion

Alike most islands in the world, the history of animal and plant introductions in the French Southern and Antarctic Lands (TAAF) – formed by Terre Adélie (Antarctic) and a collection of islands lying from tropics (Eparses Islands) to subantarctic (Kerguelen, Crozet, Saint Paul and Amsterdam) in the south western Indian ocean - is strongly correlated with the history of human occupation. Since the beginning of research development in the TAAF, numerous scientific programs have allowed to better document impacts of these non-native species on ecosystems and native biodiversity (e.g. competition, predation, browsing, soil erosion, ‘invasional meltdown’, transmission of pathogens) but also to understand their distribution and their population dynamics. We will first review this significant work that was used to support the implementation of the first management measures. Beyond early experimental eradication operations carried out in the 1950s, the implementation of a first strategy for the management of invasive alien species has been initiated for almost twenty years to ensure the long-term preservation of the native biodiversity of the islands. This strategy is based on three pillars: prevention of introductions, early detection and eradication/control of invasive populations. We will present here some case studies of the first eradication efforts and impacts on species and ecosystem recovery. Despite initial limited financial and human resources, a total of 7 species of introduced mammals established on 13 islands have already been eradicated and more than 70 invasive plant species have been targeted. Management operations were conducted on islands ranging from 80 hectares to 3,405 hectares. From now on, TAAF are looking to set up a new adapted strategy to meet future challenges on a larger scale (i.e. routine implementation of eradication on islands larger than 1,000 hectares). Perspectives in terms of capacity building, regional networking and fundraising will be presented.

Keywords: invasive species, ecological restoration, protected area, management, biosecurity

*Speaker
†Corresponding author: david.ringler@taaf.fr
Past, present and future of invasive alien species on the Macaronesian islands

Marta Lopez-Darias *,† 1, Paulo A. V. Borges 2, Cristina Medeiros 3, Paulo Oliveira 3, Julien Christophe Piquet 4, Juan Luis Rodríguez-Luengo 5

1 Instituto de Productos Naturales y Agrobiología CSIC (IPNA-CSIC) – Ave. Astrofísico Fco. Sanchez, 3, La Laguna, Tenerife, Canary Islands, Spain
2 Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores (cE3c) – Universidade dos Açores Rua Capitão João d’Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Terceira, Açores, Portugal
3 Instituto das Florestas e Conservação da Natureza, Secretaria Regional do Ambiente e Recursos Naturais (IP-RAM) – Quinta Vila Passos, Rua Alferes Veiga Pestana 15, 9054-505, Funchal – Madeira, Portugal
4 Instituto de Productos Naturales y Agrobiología CSIC (IPNA-CSIC) – Avda. Astrofísico Fco. Sánchez, 3, La Laguna, Tenerife, Canary Islands, Spain
5 Servicio de Biodiversidad, Gobierno de Canarias, (GOBCAN) – Ave. de Anaga 35, planta 11, 38170 Santa Cruz de Tenerife, Canary Islands., Spain

The European Macaronesian archipelagos (Azores, the Canary Islands, Madeira and Selvagens Islands) are one of the most important biodiversity hotspots in Europe. Biogeographically similar but administratively managed by two countries (Portugal and Spain), these archipelagos suffer common problems posed by biological invasions. We reviewed past and present invasive alien species (IAS) actions carried out in each archipelago in aspects such as: i) building awareness and support, ii) collecting, managing and sharing information, iii) strengthening national policy, legal and institutional frameworks, iv) regional co-operation, v) prevention, vi) early detection and rapid responses, vii) mitigation of impacts, and viii) restoration of native biodiversity. State-of-the-art analysis has allowed the identification of existing gaps and aspects to which more efforts have been allocated. In general, despite some past efforts, vigorous information and education programmes for different target audiences are lacking, and IAS are not formally incorporated to education programmes. Species inventories and exchange of information are insufficient and regional and national law should be still strengthened. Specific aims and prescription regulated by the EU Regulation 1143/2014 for the outermost regions have been timidly (or have not been yet) implemented. Conflicts between the national and EU level have affected the implementaion of IAS legal measures, being urgent to get consistency and harmonisation between policies and legislations. Regional cooperation is scarce, as well as it is among different institutions within some archipelagos. In general, mitigation of impacts has monopolized most of the funds allocated to IAS in all the archipelagos. A considerable much less effort aimed at prevention or early warning actions have been accomplished in the region, despite these being the ones producing the most profitable outputs. Finally, restoration actions related to IAS management are scarce and should be promoted more intensively. Bearing in mind that Macaronesia hosts a tremendous portion of European biodiversity in relation to the area it occupies, it is urgent to implement regional, national and European strategies that quickly have an impact on effectively managing IAS within a region whose vulnerable and fragile ecosystems are still highly threatened.

Keywords: invasive alien species, islands, Macaronesia, review

*Speaker
†Corresponding author: mdarias@ipna.csic.es
Island rewilding with giant tortoises: state of the art and future directions (Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild and rewilded: Giant Aldabra tortoises in the Western Indian Ocean, Dennis M. Hansen</td>
<td>156</td>
</tr>
<tr>
<td>Pleistocene Rewilding of the Bahama Islands, David Campbell</td>
<td>157</td>
</tr>
<tr>
<td>The world’s largest rewilded tortoise herd and its island ecosystem: The Frégate Island experience, Richard Baxter</td>
<td>158</td>
</tr>
<tr>
<td>A fire-fighting perspective on rewilding Madagascar with giant tortoises, Christine Griffiths [et al.]</td>
<td>159</td>
</tr>
<tr>
<td>Potential Giant tortoise rewilding on La Réunion: restoration of a recently extinct keystone ecosystem engineer, James Juvik</td>
<td>160</td>
</tr>
</tbody>
</table>
Wild and rewilded: Giant Aldabra tortoises in the Western Indian Ocean

Dennis M. Hansen *

1 Universität Zürich, Zoological Museum and the Department of Evolutionary Biology and Environmental Studies (IEU) – Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Giant tortoises were widespread on islands around the world until humans recently arrived and drove almost all of them to extinction. Seven out of eight endemic WIO species have gone extinct, with many negative effects for the islands’ remaining native biodiversity, as the giant tortoises were key ecosystem engineers. What could be a picture of despair has been turned into a conservation and restoration success, as the WIO in the last two decades has emerged as a world-leading region in the development and application of rewilding as a conservation action. An ever-increasing number of rewilding projects throughout the WIO aim to resurrect the megafaunal ecosystem functions of the extinct giant tortoises by rewilding with the sole surviving WIO species, the Aldabra giant tortoise (Aldabrachelys gigantea), which survives in the wild on Aldabra Atoll, Seychelles. The tortoises currently do well on the atoll, with a current population of about 100,000. Unfortunately, their ecosystem is threatened by climate change. Drought is already a serious issue and sea level rise is poised to drown large areas of the atoll in the next few hundred years. I argue that conservation management of both wild and rewilded tortoises and their respective ecosystems can learn a lot from each other, especially from a closer long-term integration of research activities on Aldabra and rewilding projects in the WIO. There are still major gaps in our basic understanding of tortoise biology, ecology, and genetics. Joint focused research in these areas would provide a solid understanding with which to optimize the management of tortoise-mediated ecosystem functioning in rewilding sites, and minimise the impacts of projected climate change on giant tortoises and their ecosystem functions on Aldabra. Lastly, one aspect that is often forgotten in tortoise rewilding research is how intimately giant tortoises are linked to the WIO nations’ local cultures, and how closely many rewilding projects are linked to their socio-economic systems. Promoting the use of the Aldabra giant tortoise as an icon for the WIO to encourage regional co-operation is a low-hanging fruit waiting to be picked and dispersed.

Keywords: Aldabra giant tortoise, ecosystem restoration, Giant tortoise, rewilding

*Speaker
Pleistocene Rewilding of the Bahama Islands

David Campbell * 1

1 Grinnell College – 1115 8th Avenue, Grinnell, IA 50112, United States

Rewilding is the restoration of extinct species - or their ecological surrogates – to their former habitats. Not only does rewilding restore species (or their surrogates) to their former range, but it restores the ecosystemic services of those species. In the Bahamas examples have been the introduction of hutias (Geocapromys ingrahami) to the Exuma Cays and the release of confiscated (and therefore possibly disease-infested) rock iguanas (Cyclura rileyi) to cays off of San Salvador. The hutias dramatically transformed the vegetation of their new habitats, likely because of the absence of an extinct predator, Tyto pollens. The iguana transfer was conducted for epidemiological reasons; rewilding was the byproduct. Extant relatives of extinct Pleistocene species have the potential to be rewilded in the Bahamas. Examples are the Isabela Island giant tortoise (Chelonoidis vicina), which is the closest living relative to the extinct Bahamian tortoise Chelonoidis alburyornum; the Cuban crocodile (Crocodylus rhombifer), which the historical and fossil record shows to have been widespread throughout the Bahamas; and the Hawaiian monk seal (Neomonachus schauinslandi), which would be an ecological surrogate for the extinct West Indian monk seal (N. tropicalis), last seen in the mid-Twentieth Century. There are controversies, risks and virtues attendant to the rewilding of these species.

Keywords: rewilding, extinct species, ecological surrogates, Cuban crocodile, monk seal, extinct Bahamian tortoise

*Speaker
The world’s largest rewilded tortoise herd and its island ecosystem: The Frégate Island experience

Richard Baxter * 2,1

1 University of Zürich (UZH) – Rämistrasse 71 CH-8006 Zürich, Switzerland
2 Fregate Island Private (FIP) – Fregate Island Private, Seychelles, Seychelles

Megaherbivore reintroductions are high in risk and uncertainty. Environmental managers are expected to mitigate against these through scientific research, and adaptive management of project goals and expectations. Often, ecosystems requiring restoration are on private land with established human activities. I present how an initially small reintroduction project with Aldabra giant tortoises (Aldabrachelys gigantea) on Frégate Island, a 220 hectare private eco-resort island in the Seychelles, has grown into the world’s largest rewilded tortoise herd. I present and discuss the impact of the tortoises on the island’s ecosystem, the challenges that are associated with managing the herd, and how to maximise the impact of the herd in ongoing habitat restoration projects. From a small founder population of 40 individuals, Frégate Island now boasts more than 3500 free roaming Aldabra giant tortoises. This was achieved through habitat restoration, protection from human influence, and additional tortoise reintroductions. The activities of the self-sustaining, free-roaming tortoise herd have created heterogeneous habitats over large areas of the island, creating a wilder ecosystem and reinforcing key ecosystem functions, such as seed dispersal and nutrient cycling, which directly supports a number of endemic Seychelles bird and insect species. However, this key component of rewilding projects, is carried out within the boundaries of balancing business operation requirements. On the island, human influence is limited, but allowing resort guests to interact with the tortoises in a wild ecosystem is providing an excellent opportunity to demonstrate rewilding initiatives and restoration outcomes important for managing stakeholder expectations. On Frégate Island, the rewilded tortoise herd is low-risk, cost effective, with minimal social challenges, although the current high density of the tortoise herd requires active management through translocations to other rewilding projects. These projects benefit from understanding the long-term impacts of island rewilding with tortoises as observed on Frégate Island.

Keywords: conservation, giant tortoise, island, restoration, rewilding

*Speaker
A fire-fighting perspective on rewilding Madagascar with giant tortoises

Christine Griffiths *,† 1, Owen Griffiths 2, Aldus Andriamamonjy 3, Roger Randalana 3, Radosoa Andrianaivoarivelo 3

1 Ebony Forest Ltd (EFL) – Seven Coloured Earth Road, Chamarel, Mauritius
2 La Vanille Nature Park – Senneville Riviere Des Anguilles, Mauritius
3 Biodiversity Conservation Madagascar – Résidence Fanambinantsoa Villa 3 Tanjombato Antananarivo 101, Madagascar

Large vertebrates affect fire regimes by consuming plant matter that would otherwise accumulate as fuel. While fire was part of the natural landscape in pre-human Madagascar, today it is of a much higher intensity and frequency due to (1) the loss of the island’s megaherbivore community, (2) the persistent and deliberate use of fire by humans, and (3) the creation and propagation of fire-prone grasslands. Madagascar’s once diverse vertebrate herbivore assemblage of now-extinct primates, hippos, elephant birds and giant tortoises engineered the landscape. Giant tortoises were particularly important because they could attain high densities, maintain short-cropped grazing lawns and consume vast quantities of dry leaf litter, thereby reducing the fire fuel load and impact of natural fires. Madagascar’s remnant and rapidly disappearing forests, home to one of the world’s largest and most threatened endemic biota, are threatened by annual uncontrolled wildfires, invariably started to improve pasture for grazing cattle. With supporting evidence from studies of degraded ecosystems in Mauritius and Rodrigues that have been rewilded with Aldabra giant tortoises, we argue that rewilding Madagascar with giant tortoises is a viable landscape-based, long-term, low-maintenance approach to substantially lower the risk and impact of fires on forests at risk of fire in Madagascar. Giant tortoises would not only reduce above-ground plant biomass, but also help restore plant distribution through seed dispersal, and create a mosaic of habitats. Testing this approach as soon as possible is critical, as fire-proneness is projected to increase with climate change in large parts of Madagascar.

Keywords: ecological replacement, Madagascar, restoration, rewilding, tortoises

*Speaker
†Corresponding author: christine@ebonyforest.com
Potential Giant tortoise rewilding on La Réunion: restoration of a recently extinct keystone ecosystem engineer

James Juvik *† ¹

1 Turtle Conservancy & Indian Ocean Tortoise Alliance (IOTA) – New York, United States

Until recently (past 175-3000 years) giant land tortoises on remote tropical and sub-tropical islands represented the last remaining relicts of reptile dominated ecosystems. Initial late-human discovery and settlement of island led to rapid extinction of giant tortoises worldwide: a) South Western Pacific (New Caledonia, Fiji, Vanuatu) 2000-3000yrs BP; b) Greater Antilles (Bahamas, Turk-Caicos, Cuba, Hispaniola) 900-4000yrs BP; and Western Indian Ocean (Mascarenes and Madagascar) 175-1000yrs BP. In the Mascarenes Human discovery in the early 16thcentury led to multiple extinctions of several giant tortoise species (endemic genus *Cylindraspis*) by the middle of the 19thcentury. The La Réunion Giant Tortoises (*Cylindraspis indica*) were exterminated by 1840. Yet, after almost two hundred years there remains a strong indigenous cultural attachment to tortoises, as evidenced by the importation and widespread husbandry of radiated tortoises (*Astrochelys radiata*) from nearby Madagascar. Recent efforts in the Seychelles to re-introduce the surviving Aldabra Giant tortoise (*Aldabrachelys gigantea*) to other granitic Islands in the Seychelles have been successful and are continuing. In Mauritius rewilding of Aldabra tortoises (as a proxy replacement for the extinct local forms) has proceeded on Round Island, Ile aux Aigrettes and Rodrigues over the past two decades leading to dramatic successes in native ecosystem restoration. Aldabra tortoises are currently being bred in numbers in captivity on La Réunion and are potentially available locally for experimental release (controlled/confined) in native or mixed native/alien ecosystems on the Island. We here evaluate alternative experimental protocols and potential sites for tortoise rewilding on La Réunion. Unlike any other accidental or intentional alien species introductions on Islands, giant tortoise rewilding is completely reversible if unanticipated environmental impacts prove detrimental.

Keywords: La Réunion, proxy species, restoration, rewilding, tortoise

*Speaker
†Corresponding author: jjuvik@hawaii.edu
Thursday, July 11th 2019
Plenary Sessions

Contents

- Orchids, moths, and birds on Madagascar, Mauritius, and Reunion: island systems with well-constrained timeframes for species interactions and trait change, Susanne Renner ... 163
- Ecology of rain forests on a large tropical island: lessons from New Guinea, Vojtech Novotny ... 164
Orchids, moths, and birds on Madagascar, Mauritius, and Reunion: island systems with well-constrained timeframes for species interactions and trait change

Susanne Renner

1 Systematische Botanik und Mykologie, Ludwig-Maximilians-Universität München (LMU) – Menzinger Straße 67, 80638 München, Germany

The geologically young islands Mauritius (7–10 My) and Réunion (2 My), and the ancient continental island Madagascar, each harbor hundreds of species of orchids. Because orchid flowers have long fascinated biologists, their pollination has received more attention than that of other similarly species-rich tropical groups. An example is Darwin’s famous prediction of a long-tongued moth pollinator for the long-spurred Madagascan orchid *Angraecum sesquipedale*. Over the past 10 years, field studies by ecologists from the Université de La Réunion and clock-dated molecular phylogenies for clades of orchids, passerine birds, and moths occurring on these islands, have provided time frames for changing pollinator / orchid interactions. In my talk, I will present data on both younger-than-expected and older-than-expected orchid pollinators (such as the moth species in Darwin’s predicted *Angraecum / Xanthopan* trait-matching-system), and I will review what we now know about the speed of change in plant / pollinator interactions on tropical islands compared to 20 years ago.

Keywords: evolution, interactions, molecular phylogenies, pollination, Tropics

Speaker

Corresponding author: renner@lmu.de
Ecology of rain forests on a large tropical island: lessons from New Guinea

Vojtech Novotny * 1

1 Biology Center, Czech Academy of Science (CAS) – Branisovska 31, 37011 Ceske Budejovice, Czech Republic

How tropical rainforests maintain their high biological diversity and how they regenerate after disturbance are two key, and related, questions of tropical ecology. I will explore these questions in the ecosystems of New Guinea, looking at the balance of bottom-up and top-down effects on biodiversity in rainforest food webs, and the dynamics of these effects along succession and elevation ecological gradients.

Keywords: rainforest, biodiversity, food web, New Guinea
Atmosphere - biosphere - geosphere interactions

Contents

Will climate change shift tropical montane cloud forests upwards on islands?, Robin Pouteau [et al.] .. 166

The challenges of measuring cloud liquid water content and cloud water interception in tropical montane cloud forests, Thomas Giambelluca [et al.] 167

Cloud water interception and resilience of tropical montane bryophytes to climate change in cloud forests of La Réunion, Claudine Ah-Peng [et al.] 168

Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forests-gases-aerosols-clouds system in the tropical island of La Réunion, Valentin Duflot [et al.] .. 169

Climate change in the southwest Indian ocean: observations and projections, Marie-Dominique Leroux [et al.] ... 171

Satellite based oceanic monitoring around Reunion Island for the years 2003 to 2017, Alexandre Wiefels [et al.] ... 172
Will climate change shift tropical montane cloud forests upwards on islands?

Robin Pouteau *, Thomas Giambelluca 2, Claudine Ah-Peng 3, Jean-Yves Meyer 4

1 Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation – Taizhou University, Taizhou, China
2 University of Hawaii at Manoa – 2500 Campus Rd, Honolulu, HI 96822, United States
3 University of La Réunion (UMR PVBMT) – 7, chemin de l’IRAT, 97410, Saint-Pierre, Réunion
4 Délégation à la Recherche de la Polynésie française – Bâtiment du Gouvernement, avenue Pouvanana Oopa B.P. 20981, 98713 Papeete, Tahiti, French Polynesia

Island tropical montane cloud forests (TMCFs) host a disproportionally high share of the global biodiversity and provide critical ecosystem services to vulnerable insular societies. However, this ecosystem is imperiled by anthropogenic impacts including climate change that might push TMCFs towards higher elevations. The elevation at which TMCFs start varies greatly among islands and may depend on topographically driven local climate, which may in turn be influenced by large-scale climate. Thus, a necessary prerequisite to assessing the vulnerability of island TMCFs to climate change is to determine the role of island features versus regional climate in influencing local climate at the lower TMCF ecotone. An extensive literature review of the elevation at which island TMCFs start was undertaken. This elevation was modelled as a function of the altitude of the lifting condensation level (LCL) imposed by regional climate, island maximum elevation and upwind forest loss over the past 15 years. The elevation of the lower TMCF boundary was found to have been reported for 93 islands worldwide. TMCFs start from as low as 300 m on the small islands of Kosrae (Micronesia; maximum elevation = 628 m) and Aneityum (Vanuatu; 852 m) to a maximum of 1,600 m on the large islands of Cuba (1,974 m) and Hispaniola (3,175 m), providing a spectacular example of the ’Massenerhebung effect’. Both regional climate (LCL altitude) and island features (maximum elevation) influenced the elevation of the lower TMCF boundary, and these variables together accounted for 79% of the variance. On islands, climate change is likely to cause significant but small upslope shifts of the LCL and subsequently of TMCF lower boundary elevation in the future (+4.4 m for each 1°C increase in temperature). TMCF clearing and biological invasions might appear to be more pressing threats.

Keywords: global change, Lifting cloud layer, tropical montane cloud forest

*Speaker
The challenges of measuring cloud liquid water content and cloud water interception in tropical montane cloud forests

Thomas Giambelluca *, Han Tseng 1, Michael Nullet 1, John Delay 2, Jennifer Griswold 3, Freitag Steffen 3, Steven Howell 3, Alison Nugent 3, Cody Winchester 3, David Beilman 1

1 University of Hawai‘i at Mānoa (UHM) – Geography and Environment, 2424 Maile Way, Saunders 445, Honolulu, HI 96822, United States
2 Honolulu Community College (HCC) – Honolulu, HI, United States
3 University of Hawai‘i at Mānoa (UHM) – Honolulu, HI 96822, United States

Tropical montane cloud forests (TMCFs) are important ecosystems that serve as havens for diverse biota and act as a water source for mountain watersheds. The contribution of wind-blown cloud droplets intercepted by TMCF vegetation to the hydrological input of these ecosystems and watersheds is difficult to measure, but important to know given the threats of climate warming, land cover change, and species invasion. Despite recognition of the importance of TMCF hydrology, field measurements of cloud water interception (CWI) and related variables are relatively sparse, in part, because of the difficulty in making reliable observations. The canopy water balance approach can be used to estimate CWI based on measurements of above-canopy precipitation, below-canopy net precipitation (throughfall plus stemflow), and estimates of wet canopy evaporation. To enable estimation of the spatial patterns of CWI, it is useful to measure not only CWI at representative sites, but also wind speed and cloud liquid water content (LWC). The product of those two variables yields cloud water flux (CWF) which, combined with parameters describing the vegetation, can be used to simulate spatially and temporally varying CWI. LWC sensors are generally quite expensive. Therefore, we tested the use of the relatively inexpensive Juvik-type passive fog gauge and an anemometer to estimate CWF and LWC. We found that fog-gauge-derived estimates were well correlated with highly accurate LWC measurements from a phase Doppler interferometer (PDI), although the inferred fog gauge catch efficiency was much lower than expected at approximately 13%. Based on these results, we estimated LWC and CWF based on fog gauge and wind speed measurements at five sites in Hawai‘i. Results show varying means and diurnal patterns depending on location relative to topography, elevation, and wind direction. In follow-on analysis, these results will be used to estimate the spatial patterns of CWI across TMCFs of the Hawaiian Islands.

Keywords: tropical montane cloud forests, cloud water interception, fog drip, cloud liquid water content, fog gauges

*Speaker
Cloud water interception and resilience of tropical montane bryophytes to climate change in cloud forests of La Réunion

Claudine Ah-Peng *† 1, Louise Guérot 2, Laura Figenschou 3, Anna Doizy 4, Pierre Stamenoff 5, Terry A.j. Hedderston 3

1 Université de La Réunion (UMR PVBMT) – UMR PVBMT Université de La Réunion – Pôle de Protection des Plantes, 7 chemin de l’IRAT, 97410 Saint-Pierre, France
2 Université de La Réunion (UMR PVBMT) – UMR PVBMT Université de La Réunion – 7 chemin de l’IRAT, 97410, Saint-Pierre, France
3 University of Cape Town (Biological Sciences department) – Private Bag X3, Rondebosch 7701, South Africa, South Africa
4 Cirad (UMR PVBMT) – UMR PVBMT Cirad – Pôle de protection des plantes, 7 Chemin de l’IRAT, 97410 Saint-Pierre, France
5 Observatoire des Sciences de l’Univers de La Réunion (OSU-Réunion) – Institut national des sciences de l’Univers, Université de la Réunion : UMS3365, Institut national des sciences de l’Univers, Institut national des sciences de l’Univers, Institut national des sciences de l’Univers – OSU-R Bâtiment S4B, 15, avenue René Cassin CS 92003 97744 Saint-Denis Cedex 9, France

Tropical montane cloud forests (TMCFs) are characterized by frequent cloud immersion, host a high diversity of global biodiversity and provide vital ecosystem services to insular populations. Climate change on islands, is expected to both raise the cloud height base as a result of temperature increase and to increase the frequency of extreme events like drought. Bryophytes contribute a significant biomass in these systems yet the role of cloud water and the resilience of bryophytes to drought in island TMCFs is still poorly known. In La Réunion, we implemented a novel method to follow cloud water interception by bryophytes in the TMCF using in situ lysimeters. We showed that two abundant TMCF liverworts possess an excellent ability to intercept and store cloud water, and that stored water fluctuated according to climatic conditions. In order to better understand the ecophysiology of TMCF bryophytes, we examined chlorophyll fluorescence, under laboratory conditions, for 16 bryophyte species in response to dehydration and rehydration. This was accompanied by measurements of water retention capacity and relative water content of each species. Highest Water Retention Capacity and Relative Water Content were recorded for Sphagnum sp (2174 %; 91.37 %) and Anthoceros sp (1540 %; 7815 %). Dry down curves showed that species with high water storage capacity are favored by maintaining longer optimal photosynthetic activity. After one week of desiccation, half of the species could recover 50 % of their optimal photosynthetic activity within 24 h of rehydration. Most species, after 7 weeks of desiccation, could not recover their original photosynthetic activity after rehydration. These experiments highlight the presence of various strategies for managing desiccation by TMCF bryophytes at the microhabitat level. Bryophytes inhabiting the TMCF, exhibit a strong strategy in either tolerance or drought avoidance or a combination of both strategies, indicating a better adaptation to drought than expected. However, impact of repetitive drought on the physiology of the TMCF species remains unknown. The multiplicity of responses recorded for TMCF bryophytes regarding their physiology and life forms indicate that climate change will have distinct impacts on species.

Keywords: photosynthetic activity, ecohydrology, chlorophyll fluorescence, atmosphere/biosphere

*Speaker
†Corresponding author: claudine.ahpeng@univ-reunion.fr

sciencesconf.org:ib2019:253687
Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forests-gases-aerosols-clouds system in the tropical island of La Réunion

Valentin Duflot *, Pierre Tulet 2, Olivier Flores 3,4, Christelle Barthe 2, Aurélie Colomb 5, Laurent Deguillaume 5, Mickaël Vaïtilingom 5, Anne Perring 6, Dominique Strasberg 4

1 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion
2 Laboratoire de l’Atmosphère et des Cyclones (LACy) – Météo France, Université de la Réunion, Centre National de la Recherche Scientifique : UMR8105 – Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 SAINT DENIS CEDEX 9, France
3 Université de La Réunion - UMR Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBM) – 15 avenue René Cassin 97744 SAINT DENIS Cedex, Réunion
4 Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBM) – Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 Saint-Denis Cédex 9 pour le Cirad Station de Ligne-Paradis - 7 chemin de ÎIÎRAT - 97410 Saint-Pierre, Réunion
5 Laboratoire de Météorologie Physique - Clermont Auvergne (LaMP) – Institut national des sciences de l’Sivers, Université Clermont Auvergne : UMR6016, Centres National de la Recherche Scientifique : UMR6016, Institut national des sciences de l’Sivers – bat. Physique 5 - 3ème étg / 24 Av des landais / 63177 Aubière Cedex, France
6 National Oceanic and Atmospheric Administration (NOAA) – Boulder, CO, United States

The Forests gAses acRosols Clouds Exploratory (FARCE) campaign was conducted in March-April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, (biogenic) volatile organic compounds (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mountain slope area. The main observations obtained during this two-month intensive field campaign are summarized. They include characterizations of forest structure, concentrations of VOCs and precursors emitted by forests, aerosol loading and optical properties in the planetary boundary layer (PBL), formation of new particles by nucleation of gas-phase precursors, ice nucleating particles concentrations, and biological loading in both cloud-free and cloudy conditions. Simulations and measurements confirm that the Maïdo Observatory lies within the planetary boundary layer from late morning to late evening and that, when in the PBL, the main primary sources impacting the Maïdo Observatory are from marine origin via the Indian Ocean and from biogenic origin through the dense forest cover. They also show that i) the marine source prevails less and less while reaching the Observatory, ii) when in the PBL, depending on the localization of a horizontal windshear, the Maïdo Observatory can be affected by air masses coming directly from the ocean and passing over the Maïdo mount slope, or coming from inland, iii) bioaerosols can be observed in both cloud-free and cloudy conditions at the Maïdo Observatory, iv) BVOCs emissions by the forest covering the Maïdo mount slope can be transported upslope within clouds and are a potential way of secondary organic aerosols formation in aqueous phase at the Maïdo Observatory. These results largely contributed to the setting up of the OCTAVE 2017-2019 (Oxygenated Compounds in the Tropical Atmosphere: Variability and Exchanges) and Biomaiïdo 2019-2021 projects. These projects will provide new material for the study of nucleation processes, sources and seasonal cycles of VOC and halogens from forests and the ocean, and will focus on the contribution of the aqueous reactivity to the secondary organic aerosols’ (SOA) budget.
Keywords: Tropical forests, biogenic emissions, secondary organic aerosols, clouds
Climate change in the southwest Indian ocean: observations and projections

Marie-Dominique Leroux *,† 1, François Bonnardot *

1 Météo-France Direction Interrégionale pour l'océan Indien (DIROI) – 50 bvd du chaudron 97490 Sainte Clotilde, Réunion
2 Météo-France Direction Interregionale pour l'océan Indien (DIROI) – 50 bvd du chaudron / 97490 Sainte Clotilde, Réunion

Observations over La Réunion island during the past 50 years indicate a +0.17°C temperature increase per decade. It is a worldwide issue already bringing catastrophic results in ecologically vulnerable regions. Climate projections at coarse resolution have previously been exploited over the basin using the Fifth Coupled Model Intercomparison Project (CMIP5) of the Intergovernmental Panel on Climate Change (IPCC). They indicate a consistent regional warming response during the 21st century. In the RCP4.5 scenario, warming should remain in a range between +1.0 and +2.0°C (reference period 1971-2000). In the RCP8.5 (or pessimistic) scenario, temperatures could increase between +2.5°C over ocean areas and +4°C over land. Signals on future precipitation evolution are much less consistent with some contradictory signals especially during the rainy season. A large consensus nevertheless indicates a future decrease of precipitation during the winter season over the southern part of the South-West Indian Ocean (SWIO) region.

Small islands such as Mauritius, Seychelles, Comoros and La Réunion are not well represented by the coarse resolution (typically 200 km) of global climate models. To define adaptation strategies consistent with local issues (e.g., biodiversity conservation), it is therefore crucial to "downscale" (or refine) the information of global simulations at high resolution and evaluate the impacts of regional climate drivers (e.g., land/sea contrasts) at local scale over the different countries of the SWIO region. Through the framework of the "Adapt’action" facility, a new project named BRIO (Building Resilience in the Indian Ocean) has been funded by the Agence Française de Développement (AFD), in cooperation with Météo-France and the Indian Ocean Commission (IOC). This 2018-2020 project aims at supplying long-term regional climate simulations for the Southwest Indian Ocean as well as training for regional experts on that matter. One of the project’s final objective is to provide a set of 21st century high quality climate-related data on a free-access online regional portal. The idea is to develop user-oriented climate services for various sectors (including health, agriculture, energy and possibly ecology) at the regional and local scale, following community feedback.

This talk will present previous projections from CMIP5 over the SWIO as well as the BRIO project.

Keywords: Climate change, observations and projections, temperature, precipitation, tropical cyclones, southwest Indian Ocean
Satellite based oceanic monitoring around Reunion Island for the years 2003 to 2017

Alexandre Wiefels *,† 1,2, Jan Christopher Fischer *
3, Olivier Flores 4, Erwann Lagabrielle 1,2

1 Université de la Réunion (UR) – 15, avenue René Cassin - CS92003 -97744 Saint Denis Cedex 9, Réunion
2 Espace pour le développement (UMR 228 ESPACE DEV (IRD-UR-UM2-UG-UA)) – Université de la Réunion – Parc Technologique Universitaire, 2 rue Joseph Wetzell, F-97492 Sainte-Clotilde, La Réunion, France
3 Université Bayreuth – 95440 Bayreuth, Germany
4 UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT) – Université de la Réunion – 97410 St-Pierre, France

Coastal waters are structurally and functionally diverse hotspots of marine biodiversity. In La Réunion Island those ecosystems are characterized by frequent disturbances. Severe cyclonic storms, increasing human activity and land-use change cause multiple effects including chemical and biological pollution as well as physical destruction along the coast line. In addition, ongoing climatic changes affects marine ecosystems. In order to characterize the spatial and temporal evolution of the coastal waters around La Réunion Island we investigated optical characteristics of several sea water quality parameters. Those include the diffuse attenuation coefficient at 490 nm (Kd490), particulate organic and inorganic carbon (POC, PIC), chlorophyll a concentration and night time as well as day sea surface temperature (NSST, SST). In this study, water quality indicators were derived from daily satellite imagery data from the Moderate Resolution Imaging Spectroradiometer (MODIS) in a spatial resolution of ≈ 2 km for the years 2003 to 2017. SST around La Réunion increased reaching +1°C in the south of the research area in 14 years. Water turbidity (Kd490), POC and chlorophyll a show high intercorrelations and indicate the presence of living material (phyto- and zooplankton, bacteria). They exhibit decreasing trends over the course of our investigation. The absolute concentrations as well as the coefficients of variation are elevated along the island’s rainy eastern coastline which indicates the presence of a dynamic oceanic ecosystem. CaCO3 (PIC) concentrations are highest in the shallow waters of the western lagoons where it’s concentration decreased by an average of 0,00009 mol m-3 in the marine reserve. Potential underlying reasons are coral bleaching or macrophytic algae decrease. The ocean productivity is highest in an area of 18 km in diameter around the island. For the years 2003 to 2017, it decreased at the eastern coast while the temperature rose. This phenomenon may influence fishing rates as well as the behavior and migrations of marine megafauna. Future conditions might promote biological invasions. The coastal ecosystems are changing with the climate. It is important to assess and improve the monitoring of the following stages of this phenomenon to help preserve human life quality and native biodiversity.

Keywords: ocean, coastal ecosystems, remote sensing, climate change
Biological Invasions on Islands

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New insights on the origin and dispersion history of invasive populations of the small Indian mongoose, Ursus auroaupunctata, in the Caribbean islands, Vivien Louppe [et al.]</td>
<td>174</td>
</tr>
<tr>
<td>Invasive predator ecology and impacts in a biodiversity hotspot. The feral cat Felis catus in the New-Caledonian archipelago, Pauline Palmas [et al.]</td>
<td>175</td>
</tr>
<tr>
<td>Is reproductive ecology behind the success of an invasive snake on a Mediterranean island?, Elba Montes [et al.]</td>
<td>176</td>
</tr>
<tr>
<td>Twenty years of the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria island, Ramón Gallo-Barneto [et al.]</td>
<td>177</td>
</tr>
<tr>
<td>Invasion dynamics of an amphibian with frequent human-mediated translocations on the Andaman archipelago, Nitya Prakash Mohanty [et al.]</td>
<td>179</td>
</tr>
<tr>
<td>Global distributions of three highly invasive bird species under climate change, Martin Thibault [et al.]</td>
<td>180</td>
</tr>
<tr>
<td>Varroa destructor invasion in the South West Indian Ocean islands and its mortality impacts on the endemic honeybee subspecies Apis mellifera unicolor in Madagascar, Mauritius and La Réunion, Olivier Esnault [et al.]</td>
<td>181</td>
</tr>
<tr>
<td>Towards island-specific scenarios of biological invasions in the 21st century, Bernd Lenzner [et al.]</td>
<td>182</td>
</tr>
</tbody>
</table>
New insights on the origin and dispersion history of invasive populations of the small Indian mongoose, Urva auropunctata, in the Caribbean islands

Vivien Louppe *, Aude Lalís, Jawad Abdelkrim, Juliette Baron, and Geraldine Veron

1 Institut de Systématique, Evolution, Biodiversité UMR 7205 (ISYEB) – Museum National d’Histoire Naturelle, Ecole Pratique des Hautes Etudes, Sorbonne Université, Centre National de la Recherche Scientifique – 57 rue Cuvier, CP 51, 75231, France
2 Muséum National d’Histoire Naturelle (MNHN) – Outils et Méthodes de la Systématique Intégrative – 57, rue Cuvier - 75231 Paris Cedex 05, France

Invasive alien species (IAS) represent one of the major factors of erosion of global biodiversity, especially within island environments. The study of the dynamics of introduction and dispersion of IAS is therefore at the heart of conservation efforts in insular ecosystems. The small Indian mongoose, Urva auropunctata, is a carnivore whose native range extends from Middle-East countries, to northern India, Nepal and Myanmar. However, the species was introduced into a large number of islands of the Pacific and Indian Ocean, as well as islands of the Adriatic and Caribbean seas during the 19th and 20th centuries. This work was conducted with the aim of understanding the origin and dispersion of the populations of small Indian mongooses in the Caribbean. In addition to the sequencing of two mitochondrial markers (Cytochrome b and Control Region) from 129 samples of native and introduced zones, we developed 23 new microsatellites markers to genotype 480 individuals from six Caribbean islands, including some populations never sampled before. Classical descriptive statistics as well as spatial approaches were used to infer genetic structure patterns and colonization dynamics. Both mitochondrial and microsatellite markers revealed a strong structuration of the Caribbean populations into two main groups: the first includes the populations of Jamaica, Puerto Rico, Saint Kitts, Saint Martin, the Virgin Islands, and Grenada; the second grouped the populations from Guadeloupe and Martinique. Jamaica had the highest number of haplotypes, unique or shared with the several islands mentioned above. This results suggests, consistently with the historical records, that Jamaica could be the local source of the introduction to the other Caribbean islands formerly part of the British West Indies. These data also suggest that the populations from Jamaica originated from Southeast India or Bangladesh, while the populations of Guadeloupe and Martinique appeared closer to Pakistan individuals, and therefore seemed to result from a different introduction. The genetic structure observed for the small Indian mongoose in the Caribbean islands reveals that introduction events reflects historical geopolitic relationships of the former colonies. Understanding these patterns as well as local dynamics should help improving pest management in this region.

Keywords: invasive species, Urva auropunctata, dispersion, Caribbean, genetic markers

*Speaker
Invasive predator ecology and impacts in a biodiversity hotspot. The feral cat *Felis catus* in the New-Caledonian archipelago

Pauline Palmas *1,2, Hervé Jourdan 3, Frédéric Rigault 3, Léo Debar 3, Hélène De Méringo 2, Édouard Bourguet 3, Mathieu Mathivet 3, Raphael Gouyet 3, Matthias Lee 3, Malik Oedin 3, Rachelle Adjouhgniope 3, Yves Papillon 2,3, Elsa Bonnaud 4, Eric Vidal 3

1 Unité Ecologie, Systématique et Evolution, Equipe Ecologie des Populations et des Communautés, Université Paris-Sud 11, UMR 8079/UPS/CNRS/AgroParisTech, Bât. 362, 91405 Orsay cedex, France – Unité Ecologie, Systématique et Evolution, Équipe Ecologie des Populations et des Communautés, Université Paris-Sud 11, UMR 8079/UPS/CNRS/AgroParisTech, Bât. 362, 91405 Orsay cedex, France – Bât. 362, 91405 Orsay cedex, France

2 Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Europôle de l’Arbois, BP 80, 13545, Aix-en-Provence, France – Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Europôle de l’Arbois, BP 80, 13545, Aix-en-Provence, France – BP 80, 13545, Aix-en-Provence, France, France

3 Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix Marseille Université, CNRS, IRD, Avignon Université, Centre IRD de Nouméa, BP 98848 Nouméa cedex, Nouvelle-Calédonie – BPA5, BP 98848 Nouméa cedex, Nouvelle-Calédonie, New Caledonia

4 Ecologie Systématique et Evolution (ESE) – Université Paris-Sud - Paris 11, AgroParisTech, Centre National de la Recherche Scientifique : UMR8079 – bat. 362 91405 ORSAY CEDEX, France

Feral cat (*Felis catus*) is one of the most successful and harmful invasive predator species for island biodiversity. The presence of this alien predator species generally lead to drastic loss of native island biodiversity and represents a serious threat for numerous endemic and threatened species. Feral cats have invaded the whole New-Caledonian archipelago and all its habitats. In this study, we focused on the ecology and impacts of this invasive predator on the outstanding endemic fauna found in the different habitats of the exceptional New-Caledonia biodiversity hotspot. Feral cat diet analyses on 14 selected sites representing the 4 main natural habitats revealed a high diversified diet and high predation rates on native species particularly on squamates, flying foxes and petrels. Among the 44 vertebrates species found into the feral cat diet, 20 are IUCN red-listed threatened species. Cat movements of eleven feral cats fitted with GPS collars have been studied in a western coast Peninsula hosting an important seabird colony. Male cats showed large home ranges while female showed small home ranges. Feral cats exhibited important movements within the studied peninsula linked with the breeding cycles of seabirds. GPS data coupled with dietary informations suggested a predation that concerned both breeding adults and fledgins bird, and at a large geographic scale as some feral cats have their core home range distant to the colony (> 3km). We evaluated the effects of a high level but intense cat control on this site that showed a low sustainability of feral cat culling and a rapid recolonization process. Our results are pleading for the future limitation of feral cat impacts and call to focus first abundance limitation measures on maquis mosaic and humid forest habitats This study also provided information on the spatial extent and intensity of future control measures in the special context of a large and highly invaded island.

Keywords: biological invasions, islands, predation, movement analysis, predator management

Speaker
Is reproductive ecology behind the success of an invasive snake on a Mediterranean island?

Elba Montes * 1, Mónica Feriche 2, Esmeralda Alaminos 3, Leticia Ruiz Sueiro 4, Juan M. Pleguezuelos 2

1 Universitat de València (UV) – Av. de Blasco Ibáñez, 13, 46010 València, Spain
2 Universidad de Granada (UGR) – Avda. del Hospicio, s/n C.P. 18010 Granada, Spain
3 Parque de las Ciencias – Avda. de la Ciencia s/n 18006 Granada, Spain
4 Universidade Guarulhos (UNG) – R. Eng. Prestes Maia, 88 - Centro, Guarulhos - SP, 07023-070, Brazil

In 2003, three snake species native to the South Iberian Peninsula, entered Ibiza Island for the first time. Since its arrival 15 years ago, *Hemorrhois hippocrepis*, the Horseshoe Whip Snake, has continued to thrive well on the island and poses a threat to the endemic Ibiza Wall Lizard, *Podarcis pityusensis*, and potentially to 9 bat species and 57 bird species, all native and some of them listed as threatened. Here, we analyze its reproductive ecology to unravel whether it may be behind its invasive success. Particularly, we studied 545 specimens from the invasive population (224 females, 261 males and 60 immatures) and analyzed sexual dimorphism, body size at maturity, reproductive cycle, fat-body levels of both sexes, clutch size, newborn characteristics (size, sex ratio and weight) and female reproduction frequency of the Ibizan population, comparing these traits to those exhibited by the source population, on the south of the Iberian Peninsula. Surprisingly, Ibizan invasive Horseshoe Whip snakes are less efficient in general than those from the source population regarding this key aspect of its natural history, the reproduction. The size at maturity is rather similar between populations, with some invasive females maturing at smaller sizes than those from the source population. The reproductive cycle in both sexes is essentially similar between populations, perhaps with a temporal extension in the invasive population (earlier spermatogenesis and vitellogenesis). However, albeit the higher lipid reserves of the Ibizan snakes, more allochthonous than autochthonous females skip opportunities to breed in sequential years, and the same for some males, the latter unseen in the source population. Moreover, in spite of the larger body size of invasive females, they do not have larger clutch sizes than individuals of the source population. We conclude that reproductive ecology is not responsible for the success of the invasive population, leaving only one explanation, after having also studied its diet and predation pressure: the enemy release hypothesis.

Keywords: Ibiza, invasive species, Hemorrhois hippocrepis, Podarcis pityusensis, reproduction

*Speaker
Twenty years of the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria island

Ramón Gallo-Barneto* 1, Miguel Ángel Cabrera-Pérez 2, Miguel Ángel Peña-Estévez 3, Catalina Monzón-Argüello 4, Clara Patiño-Martínez 4, Luis Felipe López-Jurado 5, Julien C. Piquet †‡ 6, Manuel Nogales 6, Marta López-Darias§ 6

1 Área de Medio Ambiente e Infraestructuras. Gestión de Planeamiento Territorial y Medioambiental S.A. (GESPLAN) – C/ León y Castillo, 54. 35003. Las Palmas de Gran Canaria. LAS PALMAS, Spain
3 Servicio de Medio Ambiente y Emergencias, Cabildo de Gran Canaria – Edificio Insular I, C/Profesor Agustín Millares Carlo, no 14 - 18 Planta, Las Palmas, Spain
4 Asociación para el Desarrollo Sostenible y Conservación de la Biodiversidad (ADS) – C/Blas de Lezo 55, 18 G, Agüimes, 35118 Las Palmas, Spain
5 Departamento de Biología, Facultad de Ciencias del Mar, Campus de Tafira, Universidad de Las Palmas de Gran Canaria – Edificio de Ciencias Básicas. Campus Universitario de Tafira, Las Palmas de Gran Canaria. 35017 Las Palmas, Spain
6 Instituto de Productos Naturales y Agrobiología - Consejo Superior de Investigaciones Científicas (IPNA-CSIC) – Av. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

The ecological and socioeconomic effects of invasive snakes are known to have been devastating on several islands worldwide. Although some cases are very well-documented (e.g. the brown tree snake on Guam), some others are relatively unknown. With this contribution we aim to update the current state-of-the-art regarding the invasion by the California kingsnake (Lampropeltis californiae, Colubridae) on the island of Gran Canaria (Canary Islands, Spain). We provide data on the past and current distribution, trophic ecology, and impacts of this species, which have been collected during the accomplishment of several projects in the last 10 years. The distribution of the species has been assessed with the participation of citizens, diet was studied by analysing the stomach and gut content of 1129 specimens. Impacts upon the endemic giant lizard have been quantified by censusing lizards through different methodologies in invaded and non-invaded areas. The California kingsnake was first detected in 1998 on the island. In 2007, when it was considered naturalized, there was only one population nucleus located in the east of the island. In 2010 a second genetically different population was found in the northwest of the island. Currently, four invasion foci have been found, with dozens of isolated individuals throughout the rest of the island. A total of 5383 snakes have been captured on the island since 2011. Diet analyses show that these snakes mainly prey upon endemic herpetofauna, the Gran Canaria giant lizard being the main prey in the first stages of the invasion, followed by the Gran Canaria skink and Boettger’s wall gecko. However, invasive rats and mice become more consumed in later stages of the snake invasion, as snakes are causing local extinction of endemic lizards. In the light of what has been described on other islands worldwide and what is happening on Gran Canaria, we urge that islands suffering from invasive snakes should establish closer research collaborations.

*Corresponding author: rgalbar@gesplan.es
†Speaker
‡Corresponding author: jchrpi@gmail.com
§Corresponding author: mdarias@ull.edu.es
will allow joint investigation into new innovative measures and techniques to combat highly invasive species that are disturbing and ruining island ecosystems.

Keywords: California kingsnake, Gran Canaria, impacts, Lampropeltis californiae, trophic ecology
Invasion dynamics of an amphibian with frequent human-mediated translocations on the Andaman archipelago

Nitya Prakash Mohanty *, John Measey 1, Cang Hui 2

1 Center for Invasion Biology, Department of Botany and Zoology, Stellenbosch University (CIB) – Stellenbosch, Western Cape, South Africa
2 Center for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University (CIB) – Stellenbosch, Western Cape, South Africa

Island communities can be highly susceptible to invasions, but also provide unique opportunities to manage invasions. Post species introduction to islands, human-mediated translocations (HMT) can alter the course of invasions by accelerating invasive spread. Therefore, modelling of invading organisms requires accounting for HMT along with complexities in species demography, spatial context, and natural dispersal. We aim to disentangle these invasion dynamics for the Indian bullfrog, Hoplobatrachus tigerinus, on the Andaman archipelago (Bay of Bengal, India) to assess i) the effect of HMT on colonization rates, and ii) the efficacy of two potential management interventions in limiting invasive spread. We combined an age-structured demographic model allowing stage-based dispersal with a gravity model of human influence, in a spatially explicit modelling context. We parametrized the model using life-history and dispersal variables from H. tigerinus (or similar species), and remote-sensed variables describing spatial heterogeneity. The modelled invasion dynamics of H. tigerinus shows human influence can increase spread rates by a factor of three, as compared to invasion without human influence on spread. Such exacerbation of spread rates is driven by facilitation of both between and within island movements of H. tigerinus by humans. The model also predicted an overriding effect of HMTs on the origin of invasion. Of the two simulated management interventions, only constraining movement of H. tigerinus between islands was effective in limiting spread, but success was dependent on time elapsed since introduction. Based on model predictions, we find merit in recommending screening at points of entry (e.g. ports) for the hitherto uncolonized Baratang and Long Islands. Although the model provided insights into the human influence on invasive spread in an archipelago context, it did not perform optimally in estimating demographic dynamics and natural dispersal. We demonstrate the suitability of this modelling approach in understanding invasions with persisting human influence, especially in island systems.

Keywords: island invasive, Hoplobatrachus tigerinus, Indian bullfrog, management, invasive spread

*Speaker
Global distributions of three highly invasive bird species under climate change

Martin Thibault *,† 1,2, Murray Potter 3, Fabrice Brescia 1, Morgane Barbet-Massin 4

1 IAC – Equipe ARBOREAL, BP 73, 98890 Païta, New Caledonia
2 Massey University – 2Wildlife and Ecology Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
3 Massey University – Massey University Manawatu (Turitea) Tennent Drive Palmerston North 4474, New Zealand
4 ESE – Université Paris Sud - Paris XI – Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France

The red-vented bulbul (Pycnonotus cafer), the common myna (Acridotheres tristis) and the red-whiskered bulbul (Pycnonotus jocosus) are passerine bird species native to the Indian subcontinent. All three species were transported widely during the early 1900s as caged birds for trade by Indian workers. They are now considered invasive – occupying diverse habitats, feeding on and damaging a wide range of fruit, and out-compete native fauna. Predicting the current potential global distribution of these species is important to help identify locations where introduction-prevention should be prioritized. Of equal importance is an assessment of how climate change might alter their potential invasive ranges. Here, we used presence data from both their native and alien ranges and eight species distribution model (SDM) algorithms to predict their potential current ranges. We then used five global circulation models and four representative concentration pathways to predict their potential future ranges under climate change. Our results suggest that there is considerable overlap in the potential climatically suitable ranges of the three species, with the common myna having the widest potential range. Many islands, and particularly Mayotte, Madagascar, and the Indian Ocean Islands, appear to be climatically suitable for invasion. Our future projections highlight three locations (Guinea gulf, South America, and Gulf of Mexico) that could be climatically suitable for further invasion by these invasive species and predict potential shifts in the distribution of alien populations in four main geographical areas (Middle East, Australia, and South Africa). We believe that application of SDMs for invasive bird species under climate change scenarios, as used here, can offer managers a useful tool to generate potential-range distribution maps to assess and compare invasion risk at both local and global scales.

Keywords: biological invasions, birds, climate, islands, species distribution modeling

*Speaker
†Corresponding author: thibault.mn@gmail.com
Varroa destructor invasion in the South West Indian Ocean islands and its mortality impacts on the endemic honeybee subspecies Apis mellifera unicolor in Madagascar, Mauritius and La Réunion

Olivier Esnault * 1, Preeaduth Sookar 2, Nivoahanitra Perle Razafindraibe 3, Marie-Pierre Chauzat 4, Hélène Delatte 5

1 GDS Réunion & CIRAD UMR PVBMT – 1 rue du père Hauck 97418 La Plaine des Cafres 7, chemin de l’IRAT Ligne Paradis 97410 Saint-Pierre, Réunion
2 Entomology Division Agricultural Services Ministry of Agro Industry and Food Security – Reduit, Mauritius
3 Service de Surveillance et de Lutte contre les Maladies Animales Direction des Services Vétérinaires – Ampandrianomby, Madagascar
4 ANSES – Agence française de sécurité sanitaire des aliments, de l’environnement et de la santé au travail [Maisons-Alfort], Agence française de sécurité sanitaire des aliments, de l’environnement et de la santé au travail [Maisons-Alfort], Agence française de sécurité sanitaire des aliments, de l’environnement et de la santé au travail [Maisons-Alfort], Agence française de sécurité sanitaire des aliments, de l’environnement et de la santé au travail [Maisons-Alfort] – Maisons-Alfort, France
5 CIRAD UMR PVBMT – 7, chemin de l’IRAT Ligne Paradis 97410 Saint-Pierre, Réunion

Invasive species cause severe impacts on biodiversity losses, among them, emerging diseases caused by parasites are also considered as invasive species. Varroa destructor is an ectoparasite mite native from South-East Asia and has spread all over the world since the early 50’s. The mite is considered as the main sanitary threat for honeybee health worldwide. This parasite was detected for the first time in the islands of the South-West Indian Ocean (SWIO): 2010 in Madagascar, 2014 in Mauritius and 2017 in La Réunion. The aims of this work were (i) to characterize the genetic diversity of the parasite on the three islands, (ii) to assess the mortalities within honeybee population after the detection of V. destructor and (iii) to assess the spread of the parasite and identify the associated drivers. To identify the parasite strain and its diversity, mitochondrial DNA sequences were analyzed. Sanitary and epidemiological surveys were conducted in Madagascar, Mauritius and La Réunion. The varroa strain identified in the SWIO area was the invasive K strain, nevertheless several haplotypes were retrieved, among which one was common in Madagascar, Mauritius and La Réunion. The parasite invasion increased significantly the mortalities in the honeybee populations (for example, +185% of mortalities were observed in La Réunion). Beekeepers played a major role in dispersing the parasite within the islands and the dispersion speed estimated was higher in La Réunion and Mauritius than in Madagascar where the beekeeping practices are really different (modern vs. traditional). Varroa mite eradication cannot be an option for local beekeepers and several control options should be considered. Several other sanitary threats such as Aethina tumida (small hive beetle) and Paenibacillus larvae (American foulbrood) threaten the honeybees from the SWIO islands. In this insular context, routes of introduction have to be identified and the sanitary surveillance tools should be improved for all the islands.

Keywords: honeybee, invasion, mortalities, surveillance, SWIO, varroa destructor

*Speaker
Towards island-specific scenarios of biological invasions in the 21st century

Bernd Lenzner *† 1, Franz Essl 1

1 Division of Conservation Biology, Vegetation and Landscape Ecology, University Vienna – Rennweg 14, 1030 Vienna, Austria

Biological invasions have emerged as an eminent feature of recent global change, with substantial impacts on the environment and human livelihoods. Recent research demonstrated that numbers and impacts of alien species are rising unabatedly. At the same time, we lack a thorough understanding of potential future trajectories for the decades to come. With the recent establishment of comprehensive global databases on alien species distributions and impacts, it is for the first time feasible to develop and quantify future scenarios of biological invasions. Islands are especially interesting study systems as they host major biodiversity hotspots with exceptionally high endemic richness. However, anthropogenic pressures, like climate change, land use and land-cover change, pollution, overexploitation and invasive species increasingly threaten native island biodiversity. From a biological invasion perspective, islands host disproportionately high numbers of alien species compared to mainland regions and absolute numbers often exceed the native richness of flora and fauna. Further, invasive alien species are among the major threats for island biodiversity being involved in 86% of all recorded island extinctions. Here, we present a conceptual framework and a roadmap for the development of island-specific scenarios and models on how alien species richness and impact might change in the 21st century. This includes the establishment of qualitative scenario narratives and the quantification of pressures and impacts for these narratives. We aim at understanding the long-term trajectories of biological invasions on islands under different assumptions of the future, both qualitatively and quantitatively. Evaluating the option space for reducing the impacts of invasive species on island biota is crucial to develop adequate management and policy options. Finally, we aim to engage with the participants of the Island Biology Conference and utilize their expertise and wide variety of backgrounds to refine the central questions such scenarios should address.

Keywords: scenarios, storylines, predictions, impact, management, policy

*Speaker
†Corresponding author: bernd.lenzner@univie.ac.at
Conservation

Contents

- Are humans decreasing species diversity or only phylogenetic diversity in mammals on islands?, Søren Faurby [et al.] .. 184
- Systematic conservation planning in New Caledonia: supporting sustainable land-use policies with reserve selection models, Dimitri Justeau-Allaire [et al.] 185
- A science and conservation success story: insights from 30 years of research on Seychelles warblers, Martijn Hammers [et al.] ... 186
- Biodiversity conservation needs on European overseas islands: lessons from Macaronesia, Jose Azevedo [et al.] ... 187
- Evidences of global warming on island coastal biota: lessons from the Azores, Ana Isabel Neto [et al.] ... 188
- A model-based evaluation of reefs connectivity and habitat degradation scenarios - Implications for future marine spatial planning and marine conservation policies in the Western Indian Ocean, Estelle Crochelet [et al.] .. 189
- Individual variation in invasive island predators: consequences and management implications, Thomas Bodey [et al.] ... 190
- Impacts of climate change on invasive plants in small islands: the case of Azores, Maria Teresa Ferreira [et al.] ... 191
Are humans decreasing species diversity or only phylogenetic diversity in mammals on islands?

Søren Faurby *, Rasmus Pedersen, J-C Svenning, Alexandre Alexandre

1 Department of Biological and Environmental Sciences, University of Gothenburg (BioEnv) – Carl Skottsbergs gata 22B, P.O. Box 461 - SE 405 30, Gothenburg, Sweden
2 Gothenburg Global Biodiversity Center (GGBC) – Box 461, 405 30 Gothenburg, Sweden
3 Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), and Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark. – Ny Munkegade 116, 8000 Aarhus C, Denmark
4 Royal Botanic Gardens, Kew, Richmond – Richmond TW9 3AB, United Kingdom

837 out of the 5750 non-marine mammalian species that have existed within the last 130,000 years are (or were) endemic to isolated islands. Due to human actions 127 of the island endemic species, along with 225 other species are sadly now extinct. Based on their IUCN categories we can expect that another 202 island endemics and 461 other species are expected to go extinct in the next 100 years under a status quo model. The total diversity of island endemic mammals in 100 years may thus only be 61% of the species that could have been. The question is however if we also could at the same time have increased speciation rates. I.e. if we in 100 years manage to reduce extinction rates to background levels, would the geological consequences of humans be a reduction in diversity or rather an increase in species turnover? To understand this we mined the literature to get full lists of all introduced mammals to both continents and to isolated large and environmentally stable islands. We found a total of 68 such introductions to continents and 1129 to 173 islands, altogether representing 130 currently accepted species from 13 different orders. Some islands may be too small to contain stable populations of some of the species, but an estimated 925 island introductions have been to islands which plausible can maintain viable populations (estimated carrying capacity > 500 individuals). These introductions are not currently given species rank, but represents isolated populations without current gene flow and without any plausible potential for future non-human-mediated gene flow. If we were to treat these as species, which they all else equal likely will develop into, our results therefore suggest that humans may not decrease species diversity globally and in particular not on isolated islands. Considering phylogenetic diversity, in contrast simulations show that human extinctions have dramatically reduced global phylogenetic and that this reduction likely will take millions of years to recover. I.e. over geological time, the persistent signal of humans may be a reduced phylogenetic diversity and an increased species turnover, but not a reduced (mammalian) species diversity.

Keywords: mammals, introduced species, extinctions, phylogenetic diversity

*Speaker
Systematic conservation planning in New Caledonia: supporting sustainable land-use policies with reserve selection models

Dimitri Justeau-Allaire ∗† 1,2, Nicolas Rinck 3, Xavier Lorca 4, Emmanuel Coutures 3, Philippe Birnbaum 1,2

1 Botanique et Modélisation de l’Architecture des Plantes et des Végétations (UMR AMAP) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement : UMR51-2015, Institut national de la recherche agronomique [Montpellier] : UMR931, Université de Montpellier : UMR5120, Centre National de la Recherche Scientifique : UMR5120, Institut de Recherche pour le Développement : UMR123 – Bd de la Lironde TA A-51/ PS 2 34398 Montpellier cedex 5, France
2 Institut Agronomique Néo-Calédonien (IAC) – Nouméa, Nouvelle-Calédonie, New Caledonia
3 Province Sud - DENV – BP L1 - 98849 Nouméa Cedex, New Caledonia
4 ORKID, Centre de Génie Industriel, IMT Mines Albi – IMT Mines Albi – Campus Jarlard, 81013 Albi cedex 09, France

Habitat degradation, fragmentation, and destruction are today the leading causes of species extinction on Earth. A major challenge for environmental managers, hence, is to efficiently balance land use between economic development and conservation of natural habitats. In New Caledonia, the smallest biodiversity hotspot in the world, finding this trade-off is tedious. In particular, the conservation of its highly diverse forest ecosystems, distinguished by high rates of endemism, can be conflicting with mining activity, the major economic sector of New Caledonia. Managers are willing to study how to refine decisional processes through the use of systematic conservation planning and computational sustainability. To this end, we considered the project “Côte Oubliée” started in 2016 by the environmental managers of the South Province of New Caledonia. It aims at delineating a complex reserve system (including about 1200 km² of terrestrial and 950 km² of marine reserve) in the southeast of New Caledonia in an area with rich biodiversity and overlapping with different socioeconomic interests (such as 238 mining concessions, private and cultural lands, and fisheries) as well as 135 km² of area to be restored. Our objective was to identify how the reserve could be efficiently delineated while respecting socioeconomic constraints. More precisely, we focused on the biodiversity representation as much as on the spatial configuration of the reserve. Additionally, we aimed at reducing fragmentation through the identification of areas suitable for ecological restoration. Relying on a constraint-based reserve selection model, we iteratively considered operational scenarios and produced maps providing the basis for decision support. The model was then refined according to a feedback loop between managers and scientists. Through this iterative process, we could suggest a delineation of the reserve that maximized the representation of biodiversity features while satisfying managers constraints. We also highlighted key areas for reducing fragmentation through ecological restoration. This real-world pilot study showed how systematic conservation planning can provide the basis of a decision support framework for conservation, through reserve selection models. Beyond that, it showed how the iterative use of such a framework could help to reduce the gap that can sometimes exist between scientists and managers.

Keywords: New Caledonia, systematic conservation planning, computational sustainability, reserve selection

∗ Speaker
† Corresponding author: dimitri.justeau-allaire@cirad.fr

sciencesconf.org:ib2019:241849
A science and conservation success story: insights from 30 years of research on Seychelles warblers

Martijn Hammers 1, Hannah Dugdale 2, Terry Burke 3, David Richardson 4,5, Jan Komdeur 1

1 University of Groningen [Groningen] (RuG) – PO Box 72, 9700 AB Groningen, Netherlands
2 University of Leeds – Woodhouse Lane, Leeds LS2 9JT, United Kingdom
3 University of Sheffield – University of Sheffield, Sheffield, S102TN, United Kingdom
4 University of East Anglia [Norwich] (UEA) – Norwich Research Park, Norwich, NR4 7TJ, UK, United Kingdom
5 Nature Seychelles – Center for Environment and Education, The Sanctuary, Providence highway, Roche Caiman, Victoria, Seychelles

Once brought to the brink of extinction due to habitat destruction, the Seychelles warbler population has made a spectacular recovery following intensive conservation efforts. These conservation efforts were so successful that this species is no longer threatened with extinction. Apart from being a prime example of successful conservation, the Seychelles warbler has also become an iconic model species for ecological and evolutionary research. It has been studied intensively since 1985 and this long-term research program has yielded numerous significant insights in conservation, ecology and evolution. Intriguingly, this species went through a many-year bottleneck of only 25 individuals, but it does not seem to have suffered from the resultant high degree of inbreeding. We showcase how targeted conservation efforts, including habitat restoration and translocations, have saved this species from extinction and highlight the importance of long-term monitoring programs and in-depth knowledge of the species’ ecological requirements, life-history and previous conservation actions. In addition, we show several scientific highlights of the ongoing long-term study, including new insights into the evolution of sociality and ageing and the impacts of inbreeding and genetic variation on behaviour. Our results show how scientific research and successful conservation go hand in hand and underline the crucial importance of long-term studies for successful conservation of island species and ecosystems.

Keywords: Seychelles warbler, Birds, Translocations, Inbreeding, Cooperative Breeding, Ageing, Long term studies

*Speaker
Biodiversity conservation needs on European overseas islands: lessons from Macaronesia

José Azevedo *,† 1, Luisa Madruga 2

1 Centre for Ecology, Evolution and Environmental Changes & Azores Biodiversity Group (GBA/CE3C) – University of the Azores, Portugal
2 Fauna and Flora International (FFI) – The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom

In the middle of the double crisis of global warming and mass extinctions, the effectiveness of measures to conserve Earth’s biodiversity must be permanently assessed. This is particularly true on islands, given their known features of high endemism and ecological frailty. With about 5,300 terrestrial and nearly 400 marine endemic species, the Atlantic islands of Macaronesia are an ideal place to focus conservation efforts- and to check the effectiveness of existing ones. In the framework of the BEST Initiative, we compiled information on the distribution of threatened species in the Azores, Madeira and the Canaries, using IUCN’s Red List criteria. With this geographic information we proposed Key Biodiversity Areas (KBA) and compared them with the existing network of protected areas, including Natura 2000. Our list of threatened species totaled 656, most of them plants and molluscs. The Canaries hosted more than half of these species, reflecting its higher endemism density. Almost all species (90%) are endemic to Macaronesia, often to a particular island, and nearly one third are critically endangered. There was a knowledge bias against smaller, less mobile, species, like insects. The number of threatened species is therefore underestimated. A lack of data on the geographic distribution was also noted, affecting e.g. two thirds of the fish species and 40% of the reptiles. Even so we proposed 194 KBAs (of which 46 designated as priority because they represented the only known site of at least one endangered species) covering nearly a quarter of the land area. Surprisingly, after decades of conservation efforts, we found that 16 of the priority KBAs are only partially enclosed in protected areas, while 8 enjoy no protection whatsoever. Our study revealed important gaps in the knowledge of Macaronesian biodiversity and of its conservation status. It also showed the insufficiency of existing legislation and practices, from the regional level up to the European Directives, which do not list as prioritary many globally threatened species. If the objective of stopping biodiversity loss in Europe is to be reached, investments in basic science and monitoring must increase, and conservation actions must follow the resulting knowledge.

Keywords: Natura 2000, endangered species, protected areas, key biodiversity areas

* Speaker
† Corresponding author: jose.mv.azevedo@uac.pt
Evidences of global warming on island coastal biota: lessons from the Azores

Ana Isabel Neto *,† 1, Eva Cacabelos 2, João Faria 1, Ignacio Moreu 1, Afonso C. L. Prestes 1, José Azevedo 1, Gustavo M. Martins 1

1 Centre for Ecology, Evolution and Environmental Change/ Azorean Biodiversity Group (cE3c/ABG) – Universidade dos Açores, Faculdade de Ciências e Tecnologia, Departamento de Biologia, Rua da Mãe de Deus, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
2 Marine and Environmental Sciences Centre (MARE) – Quinta do Lorde Marina, Caniçal, Madeira Island, Portugal

Global warming is having a profound effect on every world ecosystem. The intertidal and shallow subtidal habitats of small oceanic islands are particularly vulnerable, given their restricted area, smaller population size, isolation and exposure to climatic elements and human activities. In the present work we review the main results of our work on the coastal ecology of the Azorean communities. Characterization studies were coupled with experimental work to shed light on the challenges facing the conservation of the coastal biota and to point out strategies to deal with it. Rising seawater temperature and changes in oceanic current patterns are known to be responsible for the arrival of new species and the disappearance of others. Recently introduced or already established non-native species in the Azores (like algae from the genus *Caulerpa* and *Asparagopsis*) have potential or ascertained impact on the native coastal communities. Moreover, changes to the relative abundance of species have also been observed: the increased abundance of herbivorous fishes, for instance, is having an effect on keystone algae species, which is compounded by unsustainable algae exploitation practices. Finally, sea level rise and the increasing frequency and magnitude of extreme events is leading to the artificialization of significant areas of coastline, with the construction of an increasing number of breakwaters, jetties and other human-made structures. In the Azores this has caused habitat loss and fragmentation, resulting in decreased abundance and diversity of intertidal biota, with the consequent decline of ecosystem services. The research reviewed in this presentation has had some impact on local regulations, e.g. on setting up marine reserves or fisheries management plans. This highlights the importance of maintaining local scientific expertise in support of the decision-making process in small oceanic islands to face the scale and speed of the predicted changes in the oceans.

Keywords: global warming, coastal urbanization, overexploitation, keystone species, community structure

*Speaker
†Corresponding author: ana.im.neto@uac.pt
A model-based evaluation of reefs connectivity and habitat degradation scenarios - Implications for future marine spatial planning and marine conservation policies in the Western Indian Ocean

Estelle Crochelet *† 1,2,3, Jason Roberts 4, Pascale Chabanet 5, Carole Martinez 6

1 Agence de Recherche pour la Biodiversité à la Réunion (ARBRE) – 18 rue des Seychelles, Lotissement Horizon, 97436 Saint-Leu, Réunion
2 IRD / ESPACE-DEV (UMR 228) – Parc Technologique Universitaire, 2 rue Joseph Wetzell, CS 41 095, 97495 Sainte Clotilde Cedex, La Réunion., Réunion
3 IRD (IRD / ENTROPIE (UMR 9220)) – Parc Technologique Universitaire, 2 rue Joseph Wetzell, CS 41 095, 97495 Sainte Clotilde Cedex, La Réunion, Réunion
4 Duke University – Marine Geospatial Ecology Laboratory, Nicholas School of the Environment, Durham, NC 27708, USA., United States
5 IRD (IRD / ENTROPIE 5UMR 9220)) – Parc Technologique Universitaire, 2 rue Joseph Wetzell, CS 41 095, 97495 Sainte Clotilde Cedex, La Réunion., Réunion
6 International Union for Conservation of Nature - IUCN (SWITZERLAND) – Gland, Switzerland

Coastal and marine ecosystems are under increasing pressure from a wide variety of threats such as habitat degradation, overfishing, offshore energy development, and climate change. As marine ecosystems degrade, so do the well-being and livelihoods of populations that depend directly on the ecosystem goods and services they provide. Marine protected areas have been proposed to protect biodiversity, restore damaged ecosystems, sustain fisheries, and rebuild overexploited stocks. The effectiveness of MPAs depends in part on their effectiveness as connected networks, linked over large areas by ecological processes such as larval dispersal. The CBD AICHI Target 11 calls for 10% of coastal and marine areas to be conserved by 2020 through effectively managed, ecologically representative and well connected systems of protected areas, and integrated into the wider landscapes and seascapes. According to the Regional State of the Coast Report (UNEP-Nairobi Convention and WIOMSA, 2015), “there is need for immediate and substantive actions to increase the adaptive capacity of coastal marine ecosystems and the people that depend on them, especially in relation to MPAs”. In order to better assess the situation in the Western Indian Ocean, we applied a biophysical model driven by ocean currents to evaluate connectivity between reefs. We applied graph-theoretic analysis, including clustering and a betweenness centrality metric. Our results show high interconnectivity within several sub-regions and lower connectivity across the WIO region. We compared the results with the current MPA network, and proposed sites/reefs that should be considered priority sites for MPA implementation: Pebane, Cosmoledo, Majunga, Masoarivo, Platte Island, Farquhar, Agalega and Geyser bank. The next step of this work is the generation of scenarios to study habitat degradation consequences on coral reef ecosystems connectivity patterns in order to better support decision-making. Results are discussed in terms of implications for transboundary marine policies and regional cooperation in the WIO. This work was conducted within the framework of the SIREME (IRD) and MASPAWIO (IUCN) projects.

Keywords: Coral reefs, connectivity, conservation, marine protected area, fishery management, larval duration, remote sensing

*Speaker
†Corresponding author: estelle.crochelet@yahoo.fr
Individual variation in invasive island predators: consequences and management implications

Thomas Bodey *,† 1,2, Robbie Mcdonald 1, James Russell 2

1 University of Exeter (UoE) – Penryn Campus Penryn Cornwall TR10 9FE, United Kingdom
2 University of Auckland (UoA) – School of Biological Sciences Auckland, New Zealand

Individual variation has been identified within a broad range of taxa as key to understanding ecological, evolutionary and conservation outcomes, but there remains limited information on such variation among invasive individuals. Invasive species remain one of the most critical threats to a wide range of island biota and communities, and such differences among individuals can have important consequences for determining variation in the impacts and fitness of invaders in novel environments. In addition, understanding such impacts would provide important insights to guide management actions. Using a natural experiment across islands invaded by different species assemblages within the Hauraki Gulf, NZ, we determined the extent and covariance of individual variation across dietary and behavioural traits in two invasive rat species in the wild. This allowed us to explicitly test how both competition (between rat species) and predation (by invasive cats when present) modulate invasive individuals’ behavior and ecology. In addition, this enables the identification of trait combinations, i.e. individual phenotypes, that result in individuals disproportionately affecting native biota. We found substantial behavioural differences among individual rats both within and between species; and within and between island locations. However, relationships between behavior and diet were complex and varied between locations, potentially mediated by density-dependent effects. These results have important implications for the theoretical understanding of the individual niche, and for applied management. They highlight how conservation actions may be triaged, particularly in situations where eradication is not currently feasible, to ensure maximum effectiveness through adapting control strategies to target those individuals that pose the greatest potential risk.

Keywords: behaviour, diet, individual variation, invasive species, niche, stable isotope analysis

*Speaker
†Corresponding author: T.W.Bodey@exeter.ac.uk
Impacts of climate change on invasive plants in small islands: the case of Azores

Maria Teresa Ferreira *,† 1, Rui Bento Elias 1

1 Centre for Ecology, Evolution and Environmental Changes - Azorean Biodiversity Group (cE3c - ABG) – Universidade dos Açores Rua Capitão João D’Ávila 9700-042 Angra do Heroísmo, Portugal

Biological invasions are a recognized serious problem for small islands. The effect that climate change can have on these invasions is still uncertain. It is commonly believed that the predicted raise in temperature and altered precipitation will favor the establishment of invasive alien species (IAS). For the case of plants, many studies have ascertained how IAS will be distributed in the future. However, these distribution predictions change greatly from location to location, with different findings depending on the hemisphere. It is thus imperative to study how the established invasive species’ distribution will change with the predicted climate change, especially for islands. Islands are hotspots of biodiversity and the spread of invasive species can become a serious problem for native ecosystems. This study aimed to ascertain how the predicted climate change will affect the potential distribution of some of the main invasive plant species present in the Azorean archipelago. For this we deliberately chose the "worst case scenario" RCP8.5 for the climatic data as a precaution strategy based on the historical and still actual trend on the greenhouse emissions. We then used the off-the-shelf BIOENSEMBLES software, to model the species distributions for two time periods, 1969-1990 and 2080-2099, and for the two main islands of the Azores, São Miguel and Terceira. We found that for most cases the potential distribution of the species decreases (21 of the 24 studied species). Only three species showed an increase of the potential distribution on both islands (Acacia melanoxylon, Persicaria capitata, Ricinus communis). These species are projected to increase their distribution towards inland on both islands, where most of the native natural vegetation is located. These species are very serious invasives, which are difficult to control, and can cause serious loss of natural biodiversity. Using the information from these projections can be very useful for decision makers when deciding the managing strategies towards invasive species in the future.

Keywords: invasive plants, climate change, species distribution models, conservation strategies, Azores

*Speaker
†Corresponding author: mteresabferreira@gmail.com
Marine Ecology

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring one of the world’s largest breeding populations of frigatebirds, Lorraine</td>
<td>193</td>
</tr>
<tr>
<td>Cook [et al.]</td>
<td></td>
</tr>
<tr>
<td>Population decline in key oceanic seabird colony of the Eastern Indian Ocean: Could</td>
<td>194</td>
</tr>
<tr>
<td>illegal egg harvesting be the prime cause?, Ravichandra Mondreti [et al.]</td>
<td></td>
</tr>
<tr>
<td>Tracking tropical seabirds at sea: intra- and interspecific differences in the foraging</td>
<td>195</td>
</tr>
<tr>
<td>ecology of white-tailed and red-tailed tropicbirds on Indian Ocean islands, Annette Fayet</td>
<td></td>
</tr>
<tr>
<td>[et al.]</td>
<td></td>
</tr>
<tr>
<td>Unravelling the relative importance of top-down and bottom-up environmental effects</td>
<td>196</td>
</tr>
<tr>
<td>driving vital rates according to sex, colony and experience in long lived species, the</td>
<td></td>
</tr>
<tr>
<td>snow petrel, Christophe Sauser</td>
<td></td>
</tr>
<tr>
<td>Exploring what movements matter in a critical eco-epidemiological situation, the case</td>
<td>197</td>
</tr>
<tr>
<td>of avian cholera in seabirds of Amsterdam island, Jérémie Tornos [et al.]</td>
<td></td>
</tr>
<tr>
<td>Genetic diversity and colony isolation in one of the world’s most endangered seabirds,</td>
<td>198</td>
</tr>
<tr>
<td>the Mascarene petrel (Pseudobulweria aterrima), endemic to Reunion Island (Indian Ocean),</td>
<td></td>
</tr>
<tr>
<td>Jade Lopez [et al.]</td>
<td></td>
</tr>
<tr>
<td>Connectivity within an oceanic seamount system: comparative phylogeography of widely-</td>
<td>199</td>
</tr>
<tr>
<td>distributed benthic invertebrates from the Indo-West Pacific, Magalie Castelin [et al.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring one of the world’s largest breeding populations of frigatebirds

Lorraine Cook *†, Nancy Bunbury 1, Cheryl Sanchez 1, April Burt 1, Frauke Fleischer-Dogley 1

1 Seychelles Islands Foundation (SIF) – La Ciotat Building, Mont Fleuri, Mahe, Seychelles

Seabird colonies enrich shallow waters surrounding the islands they inhabit through the deposition of nutrient-rich guano, which in turn supports complex marine ecosystems. Frigatebirds rely almost exclusively on islands for breeding, and like other seabirds, they face a multitude of anthropogenic threats both on land and at sea, which have led to severe declines in some parts of their range. UNESCO World Heritage Site Aldabra Atoll is home to the largest breeding frigatebird colony in the Indian Ocean, if not the world. As a mixed colony of two species – greater and lesser frigatebirds – the combined breeding population is estimated to number at least 11,000 pairs. The sensitivity of Aldabra frigatebirds to disturbance, combined with their biennial breeding pattern, makes it difficult to accurately monitor their breeding population, and population surveys were inconsistent before 2010. However, due to its significance, annual trends in Aldabra’s breeding population are now being monitored with an annual count of all active nests that was instigated in 2011. Since 2017, the breeding cycle of each species has also been closely monitored to document differences between the two species and to make comparisons with past surveys. Annual nest counts so far suggest that breeding populations of both species are stable and have not changed significantly the 1960s. However, breeding cycle monitoring shows that the timing of lesser frigatebird breeding differs markedly from greater frigatebirds and also to that recorded in the 1960s and 1970s. For both species, breeding cycle monitoring provides context to the annual nest counts, allowing better interpretation of the results. Given the importance of islands for frigatebirds, and of seabird colonies for coral reefs, continued monitoring of the major breeding colony on Aldabra, a fully protected atoll, could eventually provide an indication of the health of Aldabra’s marine ecosystem and also of frigatebird populations in the Indian Ocean.

Keywords: Aldabra Atoll, breeding colony, conservation management, Fregata, seabird

*Speaker
†Corresponding author: cook.lorraine@gmail.com

sciencesconf.org:ib2019:247041
Population decline in key oceanic seabird colony of the Eastern Indian Ocean: Could illegal egg harvesting be the prime cause?

Ravichandra Mondreti *† 1,2, Priya Davidar * 1, David Gré millet * 2,3

1 Pondicherry University (Pondicherry University) – Kalapet, Puducherry, India
2 Centre d’Ecologie Fonctionnelle et Evolutive – UMR CNRS CEFE – UMR 5175 and CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
3 Percy Fitzpatrick Institute of African Ornithology NRF-DST Centre of Excellence at the University of Cape Town – Rondebosch 7701, South Africa

We performed population counts of a nesting colony of terns (Sternidae) on Pitti Island, an official seabird sanctuary, on three different field occasions: 17 February 2013, 10 March 2013, and 10 February 2014. We also evaluated both seabird population trends using data from earlier surveys and the present survey. We assessed the number of nests as well as eggs. We also recorded egg loss due to predation, including collection and harvesting by fishermen. We conducted a questionnaire survey and interviewed 800 respondents from Kavaratti Island in the Lakshadweep Archipelago to assess the number of people involved in seabird egg harvesting and trade. We also evaluated their attitudes towards seabird conservation. Even though, we observed three tern species in the Pitti Island: Sooty Tern Onychoprion fuscatus, Brown Noddy Anous stolidus, and Greater Crested Tern Thalasseus bergii, we found only Sooty Terns nesting during our field visits. Natural predation on Sooty Terns is low (< 1%), however, fishermen removed 14%–45% of the eggs. In our study, we found 72% of the 800 respondents were either directly or indirectly involved in the harvest including the egg trade. During our survey, we found Interviewees involved in egg collection and harvesting were significantly less inclined to support seabird conservation. Pitti Island is a protected area; nonetheless, tern numbers have been decreasing since 1963. Stringent conservation measures and periodic monitoring of the nesting colonies can only save this key pelagic seabird breeding site from being lost. Another important measure is to deviate the local people from the illegal egg collection and trade.

Keywords: seabird population decline, illegal egg harvesting, Pitti island, Eastern Indian Ocean, seabird colony, Sooty Terns

*Speaker
†Corresponding author: ravichandra.mondreti@gmail.com
Tracking tropical seabirds at sea: intra- and interspecific differences in the foraging ecology of white-tailed and red-tailed tropicbirds on Indian Ocean islands

Annette Fayet *,† 1, Cheryl Sanchez 2, Gerard Rocamora 3,4, Gemma Clucas 5, Nasreen Khan 4, Jennifer Appoo 2, Nancy Bunbury 2

1 University of Oxford [Oxford] – Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
2 Seychelles Islands Foundation – PO Box 853, La Ciotat Building, Mont Fleuri, Mahé, Seychelles
3 University of Seychelles – Anse Royale, Seychelles
4 Island Conservation Society – PO Box 775, Pointe Larue, Mahe, Seychelles
5 Cornell University – Ithaca, New York 14853, United States

Tropicbirds are key pelagic seabirds in the Indian Ocean and breed on islands throughout the region. As top-marine predators, they are valuable indicators of ocean health, but their foraging ecology, and how they make use of ocean resources, remains poorly understood. This study aims to fill this gap in our knowledge of tropicbird biology by investigating the feeding ecology of the red-tailed and white-tailed tropicbirds *Phaethon rubricauda* and *Ph. lepturus*. More specifically, we determine the feeding distribution of birds using miniature GPS loggers, delve into their detailed at-sea behaviour by combining spatial data with depth and immersion loggers, and link these data with diet, using DNA metabarcoding techniques on faecal samples. To test whether feeding strategies vary between populations and marine environments, we compare two island populations of breeding white-tailed tropicbirds located in exploited and more pristine waters (Aride Island, inner Seychelles, and Aldabra Atoll, outer Seychelles, respectively). Finally, to evaluate how the two closely-related species avoid competition when breeding in sympathy, we compare the foraging strategies of red-tailed and white-tailed tropicbirds on Aldabra, one of the few places they coexist. We combine the latter with nest-based camera traps assessing potential differences in nest predation rates to identify the cause of recent red-tailed tropicbird declines and poor nesting success on Aldabra. Together, our findings provide the first complete picture of tropicbirds’ foraging ecology during breeding, reveal differences between species and populations, address important ecological questions regarding competition avoidance between closely-related sympatric species, and provide important information for the conservation of tropicbirds and other seabirds breeding on Indian Ocean islands.

Keywords: foraging ecology, seabirds, competition, Seychelles, tropicbirds, biologging, movement ecology
Unravelling the relative importance of top-down and bottom-up environmental effects driving vital rates according to sex, colony and experience in long lived species, the snow petrel

Christophe Sauser *† 1

1 Centre d’étude biologique de chizé (CEBC CNRS) – CNRS : UMR7372 – 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France

Unprecedented climate change is expected to occur in the 21st century, with greater warming often reported for high latitudes. This should result in significant ecological impacts on ecosystems, from species to communities. Environmental factors and their ecological impacts on population dynamics need to be studied to understand the diversity of responses to climate change in living organisms. In our study, we used capture-recapture modelling based on a 36-year-long individual monitoring dataset to investigate bottom-up and top-down forcing on several demographic parameters according to the sex, the colony and the breeding status of individuals in a long-lived species, the snow petrel on Petrel island in Antarctica. Survival varied according to sex and previous state of breeding (reflecting the experience of birds). Experienced breeding males survive better than inexperienced non-breeding females. Predation and sea ice concentration had a greater negative impact on survival of inexperienced individuals. Breeding probability varied with the previous state of breeding, with a lower probability for inexperienced individuals, between colonies and previous breeding experience. Interannual variations of breeding probability for inexperienced breeders were partly explained by sea ice concentration during the pre-laying period. By contrast, sea ice concentration of the preceding summer had a positive impact on experienced birds. Hatching probability depended on colony, sex and previous state of breeding, and was negatively related to the southern annular mode and the number of snowy days during the incubation period. Air temperature and wind strength during the incubation period mainly affected non-breeders of the previous year. Fledging probability depended on colony and previous state of breeding, and its variations appeared to be better explained by local environmental factors. Breeding phenology partly explained variations in fledging probability. These results highlight the importance of top down and bottom up environmental factors on the demography of a long-lived species, and of taking into account multiple parameters to understand the demographic response to environmental fluctuations. We also emphasize the importance of local factors at the colony scale on demography, highlighting the need for multiple site studies to understand the impact of environmental changes on population dynamics.

Keywords: demography, sea ice, capture mark recapture, Antarctic, seabirds

*Speaker
†Corresponding author: christophe.sauser@cebc.cnrs.fr
Exploring what movements matter in a critical eco-epidemiological situation, the case of avian cholera in seabirds of Amsterdam island

Jérémie Tornos *†1,2, Amandine Gamble 1, Romain Bazire 1, Marine Bely 1, Hubert Gantelet 2, Karine Delord 3, Christophe Barbraud 3, Henri Weimerskirch 4, Romain Garnier 5, Thierry Boulinier 1

1 Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) – Centre National de la Recherche Scientifique : UMR5175 – 1919 route de Mende - 34293 Montpellier cedex 5, France
2 Ceva Biovac – Ceva Biovac – 6 rue olivier de serre, 49070 Beaucouzé, France
3 Centre d’Études Biologiques de Chizé (CEBC) – CNRS : UMR7372, Université de La Rochelle – CNRS UMR 7372 - 79360 VILLIERS-EN-BOIS, France
4 Centre d’Etudes Biologiques de Chizé (CEBC) – CNRS : UPR1934 – Centre d’Etudes Biologiques de Chizé, 79360 Villiers-en-Bois France, France
5 Department of Veterinary Medicine – Disease Dynamics Unit, University of Cambridge, United Kingdom

Infectious diseases can be a threat for wild populations and the spatial ecology of these diseases need to be explored to understand how infectious agents circulate in spatially structured ecosystems such as islands. On Amsterdam Island (southern Indian Ocean), Pasteurella multocida, the bacteria responsible for avian cholera, causes recurrent mortality of albatross and penguin chicks. Different types of movements of individuals, from foraging to migration and prospecting, could play a major role in the circulation of the infectious agent at different scales. The main purpose of this study is to evaluate the potential role of different species in the dissemination of P. multocida with a combined study of movement ecology and eco-epidemiology. We considered potentially involved behavioral processes such as foraging movements of brown skuas (Stercorarius antarcticus) and within-season prospecting movements of Indian yellow-nosed albatrosses (Thalassarche carteri). We deployed UHF-GPS loggers on breeding skuas and non-breeding albatrosses during avian cholera outbreaks. We show that the skuas spent an important time in the colonies of albatrosses and in different places around the island, but did not hold feeding territories. In addition, we found very high seroprevalence and titers of antibodies against P. multocida among the sampled individuals, suggesting that they could play an important role in the circulation of the infectious agent. We also show that Indian yellow-nosed albatrosses in breeding failure or pre-breeding individuals can visit different conspecific colonies on the island, suggesting they could also play a role in the spread of P. multocida among breeding patches of this locally abundant but threatened species. Our study identifies various movements that may be involved in eco-epidemiological dynamics in multi-host/parasite systems and that their careful characterization is important for basic and applied reasons.

Keywords: habitat use, disease ecology, Pasteurella multocida, movement ecology, seabird

*Speaker
†Corresponding author: jeremy.tornos@cefe.cnrs.fr
Genetic diversity and colony isolation in one of the world’s most endangered seabirds, the Mascarene petrel (Pseudobulweria aterrima), endemic to Reunion Island (Indian Ocean)

Jade Lopez *,† 1, Martin Riethmuller 2, Jerome Dubos 1,3, Patrick Pinet 3, Patxi Souharce 4, François-Xavier Couzi 2, Matthieu Le Corre 1, Audrey Jaeger 1, Anaïs Grondin 1, Laurence Humeau 5

1 UMR ENTROPIE. Université de La Réunion – 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, Réunion
2 Société d’Etudes Ornithologiques de La Réunion (SEOR) – 13, ruelle des Orchidées Cambuston, 97440 Saint André, Réunion
3 Parc national de La Réunion, Life+ Pétrels – 258 Rue de la République, 97431 Plaine des Palmistes, Réunion
4 Office national de la chasse et de la Faune sauvage, Brigade nature de l’océan Indien – 97400 Saint-Denis, Réunion
5 UMR PVBMT. Université De La Réunion – 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, Réunion

Tropical petrels of the genus Pseudobulweria are among the least known and most endangered birds in the world. The Mascarene petrel (Pseudobulweria aterrima) is a very poorly known and critically endangered seabird endemic to Reunion Island. This species has an extremely small population estimation (100-200 mature individuals) suffering several anthropogenic threats as predation by introduced mammals and light pollution leading to stranding. Fifteen polymorphic microsatellites loci were isolated from this species in order to analyse genetic diversity, inbreeding and colony isolation, but also contemporary effective population size estimation and search for population bottlenecks. Analysis were done on individuals from two breeding colonies and on individuals found grounded as a consequence of light pollution. We found a surprisingly high level of genetic diversity and no significant deviation from Hardy-Weinberg Equilibrium, suggesting an absence of inbreeding. The analysis of genetic structure highlighted a slight but significant genetic differentiation between the two breeding colonies, suggesting high levels of natal philopatry and few exchanges between colonies. We also found that Mascarene petrel population probably has probably undergone a bottleneck. These results confirm that conservation actions engaged by the European Life+ Pétrels project since 2015 are strongly needed, and should be implemented independently for each colony to maintain genetic diversity.

Keywords: conservation, Pseudobulweria aterrima, microsatellites, genetic diversity, genetic structure.
Connectivity within an oceanic seamount system: comparative phylogeography of widely-distributed benthic invertebrates from the Indo-West Pacific

Magalie Castelin *, Eric Pante 2, Nicolas Da Rochas 1, Didier Aurelle 3, Sarah Samadi 1

1 Institut de Systématique, Evolution, Biodiversité UMR 7205 (ISYEB) – Museum National d’Histoire Naturelle, Ecole Pratique des Hautes Etudes, Sorbonne Université, Centre National de la Recherche Scientifique – 57 rue Cuvier, CP26 75231 Paris cedex 05, France
2 Université de La Rochelle (ULR) – LIENSs – Technoforum - 23 avenue Albert Einstein - BP 33060 - 17031 La Rochelle - France
3 Institut méditerranéen de biodiversité et d’écologie marine et continentale (IMBE) – Centre National de la Recherche Scientifique : UMR7263, Institut de recherche pour le développement [IRD] : UMR237 : UMR7263, Aix Marseille Université : UMR7263, Université d’Avignon et des Pays de Vaucluse : UMR7263 – Aix Marseille Université, Campus Etoile, Faculté St-Jérôme case 421 Av. . escadrille Normandie-Niemen 13397 MARSEILLE CEDEX 20, France

Analogous to oceanic islands, seamounts, which constitute one of the largest marine biomes on earth, offer a set of fragmented habitats in which benthic species with poor dispersive ability may undergo divergence in allopatri. This scenario have led many studies to interpret the originality of seamount-associated fauna as endemism resulting from the genetic isolation forced by the habitat fragmentation. However, the biogeography of seamount fauna remains poorly known, as less than 1% of the world’s seamounts have been investigated. Moreover, many marine organisms have one or more highly dispersive phases in their life cycle (e.g. gametes, larvae and/or adults), which should hinder allopatic divergence among distant seamount populations. Based on samples from 16 deep-sea cruises carried out by the Tropical Deep-Sea Benthos research program across the Indo-West Pacific, we investigate the intra- and interspecific genetic divergence in 170 octocorals of the genus Chrysogorgia and 150 galatheids of the genus Agononida. These two taxonomic groups are characteristic of seamount benthic fauna and share a common distribution range that encompasses two biogeographic barriers: the Indo-Malay archipelago separating the Indian and the Pacific oceans and the vast open ocean separating the Western and the Central Pacific. Using RAD-seq and based on four lanes of Illumina sequencing, we first use coalescent-based approaches to species delimitation using genome-wide SNP data and compare outputs with the primary species-hypotheses based on standard mitochondrial barcodes. Within delineated species, we then examine the connectivity patterns among seamounts and across the biogeographical barriers. Overall, our study enable the coupling of robust biodiversity assessment with investigations into species distribution and divergence processes in the deep-sea, which is of great interest with regard to the appraisal of seamount biodiversity, conservation efforts and global taxonomic initiatives.

Keywords: dispersion, fragmented habitats, genetic divergences, benthos, next generation sequencing
Contents

Moving toward data-driven ecological restoration of vegetation in the Hawaiian islands, Jonathan Price [et al.] ... 201

Invasion impacts and medium-term benefits of controlling invasive alien plants in one the most invaded island forests worldwide, Claudia Baider [et al.] 202

Ecological processes shaping community dynamics in seasonally dry tropical forests: lessons learned from a restoration program on Réunion island, Nicolas Cuénin [et al.] 203

Rewinding for rewilding: Suppressing the brown tree snake to reintroduce the endangered Guam kingfisher, Christy Leppanen [et al.] ... 204

World’s first successful national eradication of ring-necked parakeets Psittacula krameri, Jennifer Appoo [et al.] ... 205

Coral reef regeneration experiment with mineral accretion technology: a case study on Fregate Island, Seychelles, Richard Baxter [et al.] ... 206

Restoring degraded water catchments using ecosystem-based adaptation tools for long-term benefits of downstream communities in Seychelles, Vicky Stravens [et al.] 207

Strategic rewilding to restore seed dispersal to a defaunated island, Haldre Rogers [et al.] ... 208
Moving toward data-driven ecological restoration of vegetation in the Hawaiian islands

Jonathan Price *,† 1, Andrew Cole 1

1 University of Hawaii at Hilo (UHH) – 200 West Kawili Street, Hilo, Hawaii, 96720, United States

Habitat loss and invasive species have drastically modified Hawaiian ecosystems. Numerous ecological restoration efforts seek to expand native dominated vegetation and provide habitat for endangered species. However many of these efforts are limited by incomplete information about baseline conditions or realistic objectives for endangered species. Mounting data now permits a more objective approach toward representing appropriate population densities of dominant and rare plant species in a spatial context. First, an extensive collection of vegetation plot data from over 1400 locations across all of the main islands provides a quantitative basis for assessing canopy cover in a wide range of climatic environments. A focus on high quality habitat necessitates considering only of vegetation plots with minimal invasive species cover and without a history of degradation from cattle grazing. Second, a comprehensive set of habitat suitability models, compiled in GIS and based on a wide range of source data, provides a spatial context for evaluating potential habitat. For a baseline set of 176 woody species with sufficient data, we assessed vegetation plots falling within each species’ habitat envelope to determine its canopy cover under high quality habitat conditions. For these baseline species, we used ecological traits (dispersal mode, pollination mode, breeding system) and phylogenetic traits (whether it belongs to a monotypic, small or large colonist lineage) to build a multivariate model, which estimates the potential local abundance as measured by canopy cover. Species exhibiting wind pollination or a dioecious breeding system, or belonging to monotypic or small colonist lineages exhibited greater cover than species without those traits. This model was then used to estimate potential local canopy cover for the remaining species with insufficient data from vegetation plots. We then converted estimated canopy cover values to local densities (based on plant size) to provide a target density for out-planting of rare species. Combined with using habitat envelopes (among other criteria) to identify suitable re-introduction sites, these estimated densities represent a data-driven technique for rebuilding populations that have fallen due to severe anthropogenic alteration.

Keywords: Hawaii, restoration, vegetation

*Speaker
†Corresponding author: jpprice@hawaii.edu
Invasion impacts and medium-term benefits of controlling invasive alien plants in one of the most invaded island forests worldwide

Claudia Baider*, 1, Vincent Florens 2

1 The Mauritius Herbarium (MAU) – RE Vaughan Building, MSIRI Compound, Reduit, 80835, Mauritius
2 University of Mauritius (UoM) – Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Reduit, 80837, Mauritius

High oceanic islands are often hotspots of endemic species subjected to strong and rapid anthropogenic impacts that lead to high extinction and endangerment rates of their biota. Mauritius, an oceanic island in the Indian Ocean champions the highest levels of extinction per land area in the world, and similarly, extreme levels of invasion by alien species. To better understand impacts of alien plants and lost of potential frugivores on native plants, we monitored temporal changes in woody native plants in permanent plots of 0.01 and 1 hectare located in one of the island’s best preserved wet forest remnants. We sampled 28,000 woody plants reaching at least 1.3 m high in forests cleared of alien plants at least five years previously to compare with nearby control areas (non-weeded forests). Plants were permanently tagged, identified to species level and their stem diameter measured. In non-weeded plots, the number of individuals, biomass and species richness of native woody plants steadily decreased through time (5 to 15 years), with recruitment of new native individuals being virtually nil, whereas in weeded areas the opposite was observed. Recruitment in managed areas were mainly of lianas, understory and fleshy fruited species. Timely weeding also averted imminent plant species extinction. To halt and reverse the on-going degradation of protected forest remnants in Mauritius, control of alien plant species must be considered the utmost priority. Management actions like thinning of native species or planting within areas with a matrix of good quality remnants should be strongly discouraged as they bring no tangible results apart from slowing down restoration progress. At the scale of our study, extinction of the largest birds and reptiles apparently do not have much of a negative effect on the vast majority of native fleshy fruited species which appear to regenerate well shortly after alien plants are controlled. However, the recent mass-culling of the Endangered Mauritius flying fox, the last animal species able to handle large seeded species, might have profound negative effects as at least 53% of native woody plants of the wet forests have their fruits eaten by this native frugivore.

Keywords: conservation management, ecological restoration, forest, invasive alien plants, plant animal interaction

Speaker
Ecological processes shaping community dynamics in seasonally dry tropical forests: lessons learned from a restoration program on Réunion island

Nicolas Cuénin *† 1, Catherine Latreille 2, Pierre Stamenoff 3, Pascal Truong 4, Olivier Flores 1

1 University of Reunion Island (UMR PVBMT) – Université de la Réunion – 97490 Sainte-Clotilde France,
2 Conservatoire du Littoral – Saint Denis, Réunion
3 Université de la Réunion (OSUR) – Saint Denis, Réunion
4 Parc National de La Réunion (PNR) – Saint Denis, Réunion

Understanding how ecological processes control community assembly during secondary succession remains one of the greatest challenges in ecology. In a global context of habitat degradation and climate change, restoration ecology provides opportunities to both test ecological theories and optimize restoration actions. Although well-documented in tropical wet forests, the importance of environmental filtering and biotic interactions in community assembly are less known in seasonally dry tropical forests (SDTF), yet among the most threatened ecosystems worldwide, particularly on densely populated islands. Here, we study the population dynamics of early life-stages trees in a restoration program of SDTF on Réunion island that includes afforestating 9 ha of secondary savannah. We specifically aim at understanding the effects of abiotic filters, in relation with climatic constraints, and biotic processes such as competition and facilitation on individual performance. We investigate the survival and growth of 6292 individuals in 45 species between 2012 and 2017 in various conditions of planting density. In each survey plot, abiotic descriptors, such as slope, elevation and rainfall, were recorded. Species composition and intra-plot cover were monitored between 2012 and 2017. Our results show that environmental changes during the first year after planting have a strong impact on the survival of seedlings and on their relative growth. In particular, rainfall amount, especially during the dry season, act as a major determinant of seedlings survival, shifting species composition in plots. Globally, fast-growing species experiment a higher mortality than slow-growing species at all censuses. Although stems density seems to positively impact mortality through time, shadowing provided by fast-growing species increase overall survival even at early-stages. Those results highlight how restoration can improve, not only future restoration works, but also theories in community ecology. As expected, environmental filtering, especially water-availability, drive communities dynamic in SDTF. Furthermore, early intra-community effects of competition and facilitation appeared to act as strongly on species survival and growth. At local and regional scale, this study provides tools for SDTF restoration to potentially optimize survival, growth and eventually the assembly of native plant communities.

Keywords: restoration, dry forests, community dynamics, environmental filtering, biotic interactions

*Speaker
†Corresponding author: nicolas.cuenin@cirad.fr
Rewinding for rewilding: Suppressing the brown tree snake to reintroduce the endangered Guam kingfisher

Christy Leppanen *, 1, Daniel Simberloff 1

1 The University of Tennessee [Knoxville] – Knoxville, Tennessee 37996, United States

Plans to reintroduce the Guam kingfisher Todiramphus cinnamominus (Family Alcedinidae; Chamorro: Sihek) to its native range are under development. Historically limited to Guam in the western Pacific Ocean, the kingfisher was listed as endangered in 1984 and declared extinct in the wild in 1988. Its current population of about 140 individuals has been maintained by captive breeding on the mainland United States and Guam, beginning with 29 birds collected in 1984 and 1986. The invasive brown tree snake Boiga irregularis (Family Colubridae), native to parts of Australia, Indonesia, and Melanesia, is credited as the main driver of native wildlife species loss on Guam. With no known means to eradicate the snake, methods to suppress the brown tree snake population are being tested. One such method involves delivery by helicopter of dead neonatal mice bait laced with a toxicant that kills snakes, acetaminophen. Mice attached to small parachutes are deployed into treetops where snakes forage; treetop deployment also limits impacts to vulnerable non-target species on the forest floor. The hope is to reduce the snake population below a threshold that allows coexistence with native wildlife. There are possible confounding factors, so lessons learned from other native species reintroductions and other invasive species management programs will inform success of a future Guam kingfisher reintroduction. For instance, survival of reintroduced kingfishers might also hinge on mitigating other risks likely associated with the kingfisher extirpation in the first place and that are common threats to native species on islands, e.g., habitat degradation and other invasive species, such as rats and feral cats. Additionally, recent cases of new invasions following eradications, e.g., when mice become invasive subsequent to rat eradications, must be considered; we should anticipate surprising outcomes. Newly established invasive species can be transformative, as can reductions in populations of established invasive species responsible for generating transformative impacts. Will rewinding an impact recreate conditions favorable for reestablishing the kingfisher?

Keywords: brown tree snake, endangered species, Guam kingfisher, invasive species, rewilding

*Speaker
World’s first successful national eradication of ring-necked parakeets
Psittacula krameri

Jennifer Appoo *,† 1, Julio Agricole 1, Jessica Moumou 1, Frauke Fleischer-Dogley 1, Nancy Bunbury 1

1 Seychelles Islands Foundation (SIF) – La Ciotat Building, Mont Fleuri, PO Box 853, Victoria, Seychelles

There have been relatively few successful eradications of invasive alien birds compared to eradica-
tions of invasive mammals. The ring-necked parakeet (Psittacula krameri) is the most widely introduced
parrot species on the planet, having been introduced to more than 40 countries across five continents.
Control and management of the species is common but, until this year, the species had not been eradi-
cated from any of them. In the Seychelles, ring-necked parakeets were introduced as pets from the 1970s
and accidentally released birds established a small breeding population on the main island of Mahé by
the late 1990s. The rapidly expanding parakeet population caused increasing damage to agricultural
crops and, as a high-risk reservoir host and vector for pathogens, including beak and feather disease
virus (BFDV), the population posed a major threat to the endemic Seychelles black parrot (Coracopsis
barklyi), which occurs only on the nearby island of Praslin. An eradication programme to remove ring-
necked parakeets from Seychelles started in 2012 by the Seychelles Islands Foundation. We present
the eradication methods tested and applied and the results of the control efforts in the three main
phases of the programme: (1) monitoring of numbers and methods trials; (2) intensive elimination of
ring-necked parakeets; and (3) post-eradication monitoring for verification of success. We also present
the techniques of the nation-wide public information campaign which was a fundamental component
of the eradication in all phases. A total of 548 birds were culled over 5 years, 95% with shooting and
5% with mist-netting. The most effective way to reach the general public was by the eradication team
members going out and talking directly to people. The eradication was declared successful in early
2019, making Seychelles the first country in the world to officially eradicate an established population
of ring-necked parakeets from the wild. Lessons learned from this eradication will prove valuable for
eradication attempts elsewhere and this success should encourage such attempts, especially on islands.

Keywords: invasive alien bird, island, parrot, successful eradication, Seychelles

*Speaker
†Corresponding author: spc@sif.sc
Coral reef regeneration experiment with mineral accretion technology: a case study on Fregate Island, Seychelles

Richard Baxter * 1,2, Ahmad Allahgholi * † 3

1 Fregate Island Private (FIP) – Fregate Island Private, Seychelles, Seychelles
2 University of Zürich (UZH) – Rämistrasse 71CH-8006 Zürich, Switzerland
3 Coralive (Coralive) – Zürcherstrasse 161 8010 Zürich, Switzerland

Coral reefs, including those in the Seychelles, have been damaged through overfishing, dredging, pollution but also by frequent coral bleaching events. The bleaching of 1998 resulted in 98% coral mortality within the granitic Seychelles islands. There are extensive coral restoration projects in the Seychelles, which have generally focused in increasing coral recruitment on destroyed reefs through coral nurseries and coral fragment transplantation. However, there is limited literature evaluating the success of such projects, despite the fact that such evaluations would greatly help the development of best-practice guidelines. We report the preliminary results of a novel, large scale experimental restoration study, in which 800 storm-derived coral fragments (corals of opportunity) were transplanted onto eight artificial structures situated at depths between 5 and 7m. In this study, the first of its kind in the Western Indian Ocean, we compared the growth rates of coral fragments growing with or without mineral accretion technology (MAT). MAT involves the electrochemical deposition of calcium carbonate (CaCO3) by electrolysis on three dimensional iron structures to improve growth rates of transplanted coral fragments. Transplanted coral fragments were subject to either 10A 20V direct current (4 MAT treatment structures) or no current (4 control structures). First year results indicate absolute growth and settlement rates on MAT structures were higher than coral fragments in the control treatment. Survival rates on both MAT and control were 85-90%, with Acropora spp and Pocillopora spp performing particularly well on both structures but grow faster on MAT. Our results demonstrate that mineral accretion technology promotes faster growth of coral fragments. As MAT can be readily be scaled up to cover large areas, these results suggest that MAT can thereby reduce the need to harvest coral fragments from healthy colonies, and increase the speed at which new reef habitat can be established to support fish and arthropod species.

Keywords: coral, restoration, rehabilitation, ecosystem function, seychelles

*Speaker
†Corresponding author: aki@coralive.org
Restoring degraded water catchments using ecosystem-based adaptation tools for long-term benefits of downstream communities in Seychelles

Vicky Stravens *, Bruno Senterre† 2

1 Terrestrial Restoration Action Society of Seychelles (TRASS) – Baie Ste Anne Praslin Seychelles PO Box 4057, Seychelles
2 University of Seychelles, Island Biodiversity and Conservation (IBC-Unisey) – PO Box 1348 Anse Royale Mahe, Seychelles

The main threat to biodiversity on Praslin is forest fires which are aggravated during the long drought periods exacerbated by climate change. 40% of Praslin (1500 ha) are affected by forest fires. Forests play a vital role in the protection of the island’s water supply. The degradation of forests contributes to droughts, and reduced river flows. To reverse the impacts, it is vital to restore the water catchments using natural solutions to ecosystem-based approaches. The research consists in rehabilitating degraded ecosystems (25 ha) to return them to a forest formation to restore ecosystem services such as healthy water catchment. The project focused on the two largest water catchments on Praslin: Fond Boffay (150 ha) and Nouvelle Decouverte (341 ha). The management approach developed focused on replanting non-native shrublands, which involved nursery-based propagation of native plants; land preparation consisting of cutting "strip" within shrublands (strip clearing) and planting these strips with native species; post-planting maintenance, data collection and reporting. New rehabilitation trials were set up to further develop knowledge on best rehabilitation practices and methods for the degraded lands of Praslin. 5.1 ha was rehabilitated during Phase 1. Rehabilitation is mostly limited by strip clearing of the land prior to planting. Considering practical constraints (workforce) and planting seasons, the maximum coverage achievable per year is ca. 5 ha. Planting density achievable is 400-500 plantings/ha, up to 1000 plantings/ha. Addition of charcoal and top soil results in more than double growth rate for plantings done on bare soil lands. Medium-term monitoring is required to detect differences in relative success between species or planting treatments. Based on previous trials, Planchonella obovata appears to be the most successful species. Other promising species that are are Dodonaea viscosa, Ludia mauritiana, Intsia biguga and Mimusops sechellarum. The rehabilitation work resulted in the development of key knowledge for better planning of future rehabilitation work on highly degraded lands. Although still modest (5 ha), it represents the largest rehabilitation work on highly degraded lands done since the late 20th century.

Keywords: Restoration, ecosystem, based adaptation, degraded forest, water catchment, climate change

*Speaker
†Corresponding author: bsenterre@gmail.com
Strategic rewilding to restore seed dispersal to a defaunated island

Haldre Rogers *,†, Evan Fricke †, Evan Rehm †, Henry Pollock †, Hugo Thierry †, Ann Marie Gawel †, Martin Kastner †, Tammy Mildenstein †

1 Department of Ecology, Evolution, and Organismal Biology (EEOB) – 251 Bessey Hall Iowa State University Ames, IA 50011, United States

Recent declines, extinctions, and range contractions of vertebrates have disrupted important ecological functions, particularly on island systems. Restoration of ecological function requires rewilding of key species, often in the face of ongoing stressors, within heterogeneous and fragmented landscapes. As a result, successfully restoring ecological function is difficult, but islands provide an opportunity to develop strategies for restoration, which may then be applied across larger areas. Here, we assess the effect of frugivore loss as a result of the invasive brown treesnake (Boiga irregularis) on the island of Guam and develop a strategy for rewilding the island given the continuing presence of the snake. To determine how frugivores affect forest composition and structure, we compared Guam to nearby islands with vertebrate seed dispersers, using surveys, manipulative experiments, and a forest model. We demonstrate that Guam’s forests will become less diverse and less able to recover from disturbance without vertebrate seed dispersers. We then developed a strategy to restore seed dispersal to Guam’s forests. First, we assessed the seed dispersal effectiveness of 5 native birds, the Mariana Fruit Bat (Pteropus mariannus), and two non-native mammals currently present on Guam – the feral pig (Sus scrofa) and black rat (Rattus rattus). The native avian frugivores varied dramatically in their effectiveness, but the two bird species that had the broadest diets, positive impact on germination, and extensive movement across habitat types were selected as preferred candidates for reintroduction. While the non-native pig effectively dispersed seeds, the non-native rat did not; the pig may be a useful disperser in the short-term in particular habitats where it has fewer negative impacts. We then used a spatially-explicit model to identify the highest priority areas for rewilding the three frugivore species to restore ecological function, and the associated costs of invasive species control. Restoration of vertebrate seed dispersers in the presence of invasive predators may be an achievable goal on Guam, and could serve as a guide for rewilding efforts in other places that are under threat.

Keywords: rewilding, seed dispersal, restoration, ecological function, mutualism, invasive species

*Speaker
†Corresponding author: haldre@iastate.edu
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The feeding competition between the Mauritian flying fox Pteropus niger and the invasive crab-eating macaque Macaca fascicularis, Raphael Reinegger</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Depauperate seed rain but effective recruitment after reinstated dispersal evidence strong impacts of frugivore extinctions on native forest regeneration after natural disturbance, Sébastien Albert [et al.]</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Seed dispersal by chelonians and the virtually intact Aldabra seed dispersal network, Wilfredo Falcón [et al.]</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Alien ant-disrupted pollination mutualism of a declining island endemic plant varies temporally and is worsened by alien plant invasion, Prishnee Bissessur [et al.]</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Effects of exotic pollinators on network structure and ecosystem function, Arturo Lonighi</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Community-wide difference in floral traits between continental and oceanic island coastal plants, Atushi Ushimaru [et al.]</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Speciation of the sect. Camellia based on pollinator shift in Japanese islands, Harue Abe [et al.]</td>
<td>216</td>
<td></td>
</tr>
</tbody>
</table>
The feeding competition between the Mauritian flying fox Pteropus niger and the invasive crab-eating macaque Macaca fascicularis

Raphael Reinegger * 1

1 University of Bristol [Bristol] (UOB) – Senate House, Tyndall Avenue, Bristol BS8 1TH, United Kingdom

Mauritius has a long history of direct and indirect defaunation, either through hunting and harvesting of native animals, or the introduction of invasive species and logging of native forests. The native forests have become scarce, which has resulted in a conflict between commercial fruit growers and the endemic Endangered Mauritian flying fox Pteropus niger. It is the last of the three remaining large seed dispersers that still performs an important ecological function. This function is essential for the passive regeneration of the forest, but it is disrupted by P. niger’s most important food competitor: The invasive crab-eating macaque Macaca fascicularis. Macaques are known to compete with P. niger for native fruit, halt native plant reproduction and native forest regeneration and are likely to further fuel the human-wildlife conflict. This study aimed to create a deeper understanding of the impact of introduced macaques on fruit availability to P. niger and how this impact affects the ongoing conflict between fruit growers and P. niger. Additionally, this study aimed to assess the native plant richness in remnant forests. The study showed that M. fascicularis completely halts the reproduction of certain native species by destroying unripe fruit. Furthermore, M. fascicularis greatly limits the availability of native fruits to P. niger, likely forcing P. niger to feed in commercial plantations. However, it is still unclear how big the macaque population is and how much damage to native plants they cause at the island scale, indicating the need for a more in-depth study of the ecology of M. fascicularis. Furthermore, the study showed P. niger feeds in remnant forests across the island and that a specific plant species can fruit asynchronously depending on its geographic location. More research into these fruiting patterns is needed to understand the role that forest remnants play in providing certain fruits to P. niger at a certain time of the year when it would not be available elsewhere. Ultimately, restoring remnant forests and removing invasive macaques could serve as tools to increase the availability of native fruit to P. niger, potentially reducing the conflict between P. niger and fruit growers.

Keywords: Fruit bat, Feeding ecology, Forest degradation

*Speaker
Depauperate seed rain but effective recruitment after reinstated dispersal evidence strong impacts of frugivore extinctions on native forest regeneration after natural disturbance

Sébastien Albert *, Olivier Flores 1, Charlène Franc 1, Dominique Strasberg 1

1 Université de La Réunion - UMR Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT) – 15 avenue René Cassin 97744 SAINT DENIS Cedex, Réunion

Frugivore loss may lead to seed dispersal disruption, but this issue has rarely been addressed in the context of tropical primary succession where seed dispersal is a critical step in plant recolonisation. Recent works in several tropical forests suggest that native tree diversity and dynamics are negatively impacted by the disruption of plant-frugivore interactions as a consequence of defaunation. Different limiting factors, i.e. seed predation and competition with dense low vegetation, probably act in synergy with defaunation and must be disentangled to understand biodiversity loss processes. We set up a field experiment on Reunion where most large frugivores went extinct in 1800 and where the Piton de la Fournaise provides a natural experimental design: a historical lava flow bordered on both sides by an old-growth forest. We address the following questions: (1) Is the absence or rarity of native fleshy-fruited (FF) species on the historical lava flow explained by seed dispersal disruption? (2) Are large-seeded FF plants able to grow up once experimentally dispersed from old-growth forest seed sources? We monitored the active seed rain on the historical lava flow in a landscape with a high adult-plant diversity and the growth of four large-seeded trees in a manipulative factorial experiment (seed predator exclosure and fern uprooting) on the historical lava flow where these trees were totally absent. Preliminary results show that the active seed rain was dominated by native anemochorous and alien FF plants; large-seeded FF plants were absent from the seed rain despite a nearby large availability of diaspores; large-seeded trees were able to establish on lava flows, whatever the treatment. The absence of native large-seeded trees and the high abundance of alien small-fleshy-fruited plants in the monitored seed rain demonstrates that present plant-frugivore interactions are diverted for the benefit of non-native invasive plants. The ability of large-seeded plants to establish on the historical lava flow show that dispersal disruption, more than environmental filtering or predation effects, explains the complete absence of these species. Our study emphasizes the fundamental role of seed dispersal loss in ecosystem stable-state shifts and the urgency to restore it through large frugivores rewilding actions.

Keywords: Seed dispersal disruption, Primary succession, Zoochory, Biological invasions, Tropical rain forest

*Speaker
Seed dispersal by chelonians and the virtually intact Aldabra seed dispersal network

Wilfredo Falcón *† 2,1, Christopher N. Kaiser-Bunbury 3, Nancy Bunbury 4, Don Moll 5, Dennis M. Hansen 1

2 Bureau of Research and Conservation of Habitats and Biodiversity, Puerto Rico Department of Natural and Environmental Resources (BRCHB-DNER) – P.O. Box 366147, San Juan, PR 00936, United States
1 Institute of Evolutionary Biology and Environmental Studies, University of Zurich (IEU-UZH) – Winterthurerstrasse 190, 8057 Zurich, Switzerland
3 Centre for Ecology and Conservation, University of Exeter (CEC-UE) – Cornwall Campus, Penryn, TR10 9FE, United Kingdom
4 Seychelles Islands Foundation (SIF) – La Ciotat Building, Mont Fleuri, P.O. Box 853 Victoria, Mahé, Seychelles
5 Department of Biology, Missouri State University (MSU) – 901 S. National Ave., Springfield, MO 65897, United States

In recent years, it has become clear that frugivory and seed dispersal (FSD) by chelonians (turtles and tortoises) is much more common than previously thought. Yet, a review and synthesis is lacking. We reviewed published and unpublished records of chelonian FSD, and assessed the role of chelonians as seed dispersers, from individual species to the community level. We found that a substantial proportion of the world’s aquatic and terrestrial turtles and a major part of testudinid tortoises (70 species in 12 families) include fruits and/or seeds in their diet, and that fruits of at least 588 plant species in 120 families are ingested and/or dispersed by chelonians. For some chelonians, overall or in certain seasons, fruit may even form the largest part of their diet. Contrary to seed dispersal by lizards, the other major reptilian frugivores, chelonian FSD is not an island phenomenon in terms of geographic distribution. Nevertheless, on islands especially tortoises are often among the largest native terrestrial vertebrates—or were, until humans got there. Aldabra Atoll is one of such islands, and harbours the last native population of giant tortoises (Aldabrachelys gigantea) in the Western Indian Ocean. We studied the seed dispersal interactions in the plant–frugivore community of Aldabra Atoll, which is composed of ten frugivores and 37 fleshy-fruited plant species. The network was highly generalised, and giant tortoises were the second most important seed dispersers in terms of the number of interactions. In total, A. gigantea dispersed the seeds of at least 20 fleshy-fruited plant species, including large-seeded ones such as Cordia subcordata (Boraginaceae) and Guettarda speciosa (Rubiaceae). Moreover, we found that the network was most vulnerable to the loss of three particular frugivores, one of them being the giant tortoises. This study highlights the importance of tortoises as seed dispersers—especially as megafaunal ones—and suggests that the many recently extinct giant tortoises in numerous islands around the world had a similarly pivotal role in their communities before being exterminated as the Aldabra giant tortoises.

Keywords: chelonian, seed dispersal, megafauna, networks, community, turtles, tortoises

*Speaker
†Corresponding author: wfalcon.research@gmail.com
Alien ant-disrupted pollination mutualism of a declining island endemic plant varies temporally and is worsened by alien plant invasion

Prishnee Bissessur *† 1, Claudia Baider 2, Vincent Florens 3

1 University of Mauritius (UoM) – Reduit, Mauritius, Mauritius
2 The Mauritius Herbarium (MAU) – RE Vaughan Building, MSIRI Compound, Reduit, Mauritius
3 University of Mauritius (UoM) – Department of Biosciences, Reduit, Mauritius

Invasive alien species, through their varied impacts, pose the greatest threat to the thousands of island plants currently considered as highly threatened with extinction. Among these, disruptions of plant-pollinator mutualisms have been receiving increased attention recently. Such threat, however, is likely to vary much spatio-temporally, particularly when driven by alien ants for instance, but this variation remains relatively rarely studied. We examined an endangered Mauritius endemic scrambler (*Roussea simplex*) about a decade after its pollination by an endemic reptile was found to be disrupted by a widespread invasive alien ant (*Technomyrmex albipes*). We quantified alien ants’ impact by estimating natural ant-infestations of flowers in four populations and through baiting experiments done at four equidistant heights (50-200 cm) above ground over two consecutive years at two sites. We also characterised the influence of alien plant invasion on the plant’s stature. Two alien (*Anoplolepis gracilipes* and *Technomyrmex albipes*) and one native (*Plagiolepis madecassa*) ant species were found visiting flowers. Only 6.4% of flowers bore alien ants and they occurred predominantly closer to the ground. Mean frequency of infested baits and mean alien ant density per bait varied seasonally and annually and infestations predominated up to 100 cm above ground. *Roussea* plants were about three times taller in well preserved habitats than in invaded ones. New invasive ant species may appear with time and appear to displace pre-existing species and flowers may also provide resources to native ants. The severity of mutualism-disruption varies spatially and seasonally as well as inter-annually and in longer time span. Alien plant invasions increase loss of host plants which causes the scrambler to collapse closer to the ground thereby increasing accessibility of its flowers to alien ants. Alien plant invasion thus amplifies deleterious impacts of invasive ants. Conservation managers should pay attention to spatio-temporal variation in severity of threats that have been documented. It is also important to study documented threats in a broader context to unravel eventual cascading effects. In the current example, to address alien-ant disrupted pollination mutualism, reversing invasive alien plant impact may be the management to adopt instead of controlling the ants themselves.

Keywords: conservation, invasive ants, invasive plants, Mauritius, mutualism disruption, oceanic island

*Speaker
†Corresponding author: prishnee.bissessur1@umail.uom.ac.mu
Effects of exotic pollinators on network structure and ecosystem function

Arturo Lonighi *† 1

1 University of Exeter – University of Exeter Campus on Penryn, TR10 9TA, United Kingdom

Exotic species can disrupt plant-pollinator interactions and its ecosystem function. Several studies have found contrasting results regarding the impact of honey bees *Apis mellifera* on native plant-pollinator communities and pollination function. Due to its abundance and generalist behaviour, *A. mellifera* can visit many different plant species, increasing the competition for resources with other native pollinators and modifying the structure of interaction networks. Negative and positive impacts of *A. mellifera* on native plant species include lower pollination effectiveness and replacement of lost pollinators, respectively. Here, we investigate the response of plant-pollinator communities and pollination function to artificially increased *A. mellifera* abundance in an island restoration context. We recorded plant-pollinator interaction and fruit set of native plants during eight months on four control and four treatment sites on the island of Mahé, Seychelles. First results indicate a low impact of *A. mellifera* on global network topologies, yet changes in meso- and micro-scale metrics suggest that specialist plants and pollinators suffer from a higher degree of direct and indirect competition in networks with increased *A. mellifera*. The conservation implications of these findings are two-fold: *A. mellifera* may ensure pollination of rare, more specialised plant species; and *A. mellifera* is likely to outcompete specialised native pollinators. Further research is required to quantify pollination efficacy of *A. mellifera* compared to native pollinators to assess the overall impact of this exotic pollinator on native plant-pollinator communities.

Keywords: ecological networks, pollination ecology, exotic species, ecosystem function, *Apis mellifera*

*Speaker
†Corresponding author: al645@exeter.ac.uk
Community-wide difference in floral traits between continental and oceanic island coastal plants

Atushi Ushimaru *† 1, Masayoshi Hiraiwa 1

1 Kobe University – 3-11 Tsurukabuto, Kobe City, Japan

Oceanic islands usually exhibit lack of large bees and butterflies with long proboscises and dominance of small-sized bees with proboscises in their pollination networks. Such pollinator compositions are known to promote the floral evolution in some oceanic island plant populations, whose ancestors were originally pollinated by large bees and butterflies in continents and continental islands. We recently reported that long-tongued pollinators were more scarce in coastal communities of Izu (oceanic) islands compared to those of the Honshu (continental) island communities in Japan. This scarcity of long-tongued pollinators caused community-level niche shifts in oceanic-island pollinator communities, such that long-tubed flowers were more frequently visited by short-tongued pollinators. However, how have such community-level pollinator niche shifts influenced floral phenotypes in Izu island plant communities are largely unknown. To examine the issue, we compared lengths of the style, stamen and petal (and corolla tube) of 19 dominant species (8, 4, 3 and 4 species with long-, medium, short-tubed and open flowers, respectively) of coastal vegetation between the Honshu and Izu islands: 3 and 5 sites were investigated in the Honshu and Izu islands, respectively. In most long-tubed species, one or more measured traits were significantly larger in the oceanic island sites than those in continental island sites. Conversely, in most medium- and short-tubed species, any or all of the measured traits were significantly smaller in the oceanic island sites than those in continental island sites. Meanwhile, we found no differences in floral traits of open flowers between continental and oceanic island sites. Thus, we found community-wide differences in floral traits between the continental and oceanic islands in plant with corolla tubes. In some study species, the lengths of floral traits were significantly correlated with the average tongue length of pollinators, suggesting that the pollinator niche shifts might cause the floral phenotype changes in oceanic islands. In other study species, however, floral trait differences between continental and oceanic sites could not be explained by the community average of tongue length of pollinators. Our results suggest that many coastal plant species have flowers adapting to pollinator communities without long-tongued bees and butterflies in oceanic islands.

Keywords: floral traits, pollinator, plant community, phenotypic variation

*Speaker
†Corresponding author: ushimaru@kobe-u.ac.jp
Speciation of the sect. Camellia based on pollinator shift in Japanese islands

Harue Abe ∗† 1, Hiroki Miura 2, Rui Katayama 3, Wang Zhonglang 4

1 Niigata University – 94-2Koda, Sado, Niigata, Japan
2 Aomori Prefectural Asamushi Aquarium – 1-25 Babayama, Asamushi, Aomori, Japan
3 Niigata University – 8050 Ikarashi-ninocho, Nishi-ku, Niigata, Japan
4 Kunming Botanical Garden – Kunming 650204, Yunnan, China

The genus Camellia (Theaceae) is particularly prevalent in East and Southeast Asia (82-280 species). According to the Flora of China, there are 13 species in the sect. Camellia, of which 12 are found in China (11 being endemic), and only two species, C. japonica and C. rusticana, are found in the Japanese islands. Most species of Camellia have the separated filaments, but the sect. Camellia species except for C. rusticana and C. chekiangoleosa have the connected filaments, which indicates the bird-pollinated flower characteristics to keep large amount of nectar. C. japonica occurs in the end of the range of Camellia distribution. This species blooms in the winter when insects are absent and have to depend on bird pollination whereas other Camellias depend on both pollination, insects and birds. Therefore C. japonica might be the most adaptable species to the bird pollination. On the other hand, C. rusticana has ancestral traits with not-connected filaments in sect. Camellia. We hypothesized that pollinator shift occurred and speciated to sect. Camellia from ancestral genus Camellia. But C. rusticana might get back to the insect pollination to fit to the snowy environment in Japan. Hence, this study aims to examine the speciation of Japanese Camellias based on pollinator shift by comparing the floral morphologies and the genetic differentiations of genus Camellia. We compared their morphologies of leaf hypodermis, flower form, petal color, filament color and filament color in the twenty populations and estimate quantitatively the differentiation. The floral traits of C. japonica such as filament connection rates, nectar and sugar contents are one of most adapted characteristics for bird-pollination. Genetically, C. japonica is newly differentiated species based on MIG-seq and cpSSR, relatively. C. rusticana with few common SNPs could not be taxonomically positioned, but it might be an older position in the sect. Camellia. In other words, C. rusticana didn’t return to the insect pollination, but is the ancestral species in the sect. Camellia. As for the speciation of genus Camellia, the species with bird-pollination traits are not rapidly speciated from their common ancestors but occurred from different phylesis depending on environmental conditions.

Keywords: bird pollination, floral traits, MIG seq, SNPs, cpSSR

∗Speaker
†Corresponding author: habe@agr.niigata-u.ac.jp
Plant-animal interactions as drivers of biodiversity conservation on islands (Symp.)

Contents

A global review of frugivory and seed dispersal on islands, Manuel Nogales [et al.] . . 218
Double mutualisms: a global island phenomenon, Anna Traveset 220
The forgotten fauna: native seed predators on islands, Jo Carpenter [et al.] 221
Threatened plant seeks pollinator (or when conservation practices prevent mutualistic interactions), Aarón González-Castro [et al.] . 222
The role of morphological traits in mutualistic interactions among plants and vertebrates in the Galápagos, Sandra Hervias-Parejo [et al.] . 223
A Fijian rainforest tree requires bats to open its flowers - the strange evolutionary case of chiropteropisteusis, a new pollination system, Sophie "topa" Petit [et al.] . . 224
A global review of frugivory and seed dispersal on islands

Manuel Nogales ∗†, Kim Mcconkey 2, Tomás Carlo 3, Debra Wotton 4,5, Peter Bellingham 6, Anna Traveset 7, Aarón González-Castro 8, Ruben Heleno 9, Kenta Watanabe 10, Haruko Ando 11, Donald Drake 12

1 Spanish National Research Council (IPNA-CSIC) – Astrofisico Fco. Sanchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain, Spain
2 School of Natural Sciences and Engineering / National Institute of Advanced Studies – Bangalore, India
3 Department of Biology – Penn State University, United States
4 Moa’s Ark Research – Wellington, New Zealand
5 Biological Sciences – University of Canterbury, Christchurch, New Zealand
6 Lancare Research – Lincoln, New Zealand
7 Spanish National Research Council (IMEDEA-CSIC) – Institut Mediterrani d’Estudis Avançats (IMEDEA-CSIC), Balearic Islands, SPAIN, Spain
8 Spanish National Research Council (IPNA-CSIC) – Francisco Sanchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain, Spain
9 Centre for Functional Ecology, Department of Life Sciences, University of Coimbra – Portugal
10 Okinawa College / National Institute of Technology – Okinawa, Japan
11 Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, JAPAN – Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Japan
12 Department of Botany – University of Hawaii, United States

Published information on frugivory and seed dispersal on islands is widespread, patchy, and heterogeneous among the topics and islands concerned. A systematic literature search on islands was performed using Internet scientific search engines. To the best of our knowledge, this is the first review carried out at a global scale, covering frugivory and seed dispersal on islands. About 450 contributions were retrieved, with most of the knowledge focused on New Zealand (large area), the Canaries and Puerto Rico, which were the better-studied islands. They were very few studies in Pacific archipelagos near Asia and Australia, and in the Indian Ocean. Most studies were carried out during the present century, especially during the last decade. Island ecosystems are comparatively simple, so they are ideal for developing and testing interesting and original ecological and evolutionary hypotheses. Perhaps, more in-depth studies concerning seed dispersal effectiveness, non-standard mechanisms of dispersal, or complete ecological networks are more feasible on an island setting, and particularly oceanic islands, than in a more complex continental environment. In addition, comparisons among archipelagos offer opportunities for development of general theories. Indeed, the typical low biodiversity, high endemicity, and ecological simplicity of oceanic islands is a most valuable advantage. From a conservation perspective, data from the IUCN, shows that most reported extinctions in the past 500 years have occurred on islands, both for vertebrates and plants. The same pattern is found when considering only those extinctions caused by introduced alien species, one of the greatest threats to the biota of isolated territories. Therefore, it is vital to know both how native systems work and at the same time to evaluate how alien species affect native interaction networks, altering the natural order of interactions. This information is essential to halt biodiversity loss and to guide restoration efforts on islands.

Keywords: conservation and restoration, mutualistic interactions, networks, plant dissemination, seed dis-
personal effectiveness
Double mutualisms: a global island phenomenon

Anna Traveset ∗

1 Mediterranean Institute of Advanced Studies, Spanish Research Council (IMEDEA) – MIQUEL MARQUES 21, ESPORES, MALLORCA, BALEARIC ISLANDS, Spain

A double mutualism (DM) occurs when two interacting species benefit each other in two different functions, e.g., when an animal species acts both as pollinator and seed disperser of the same plant. Besides the double benefit, a DM also imposes a larger risk to both functions if the performance of one partner declines. We conducted the first global review of DMs involving pollinators and seed dispersers, aiming to: (1) assess their prevalence across ecosystems and biogeographical regions; (2) identify the main plant and animal taxa, and their traits, implicated in DMs; and (3) evaluate the conservation status of double mutualist species. We compiled published and unpublished DM records using specific search terms, noting the species involved, their conservation status and geographic location, as well as the type of study (species vs community-level) in which the DM was detected. We identified 302 DM cases involving 207 plant and 92 animal species from 16 mainland and 17 island areas. Most records come from tropical regions and islands. Animals included birds (62%), mammals (22%), and reptiles (16%), mostly opportunistic species; only 18% were nectarivores. Plants were mainly fleshy-fruited shrub or tree species (59%) with actinomorphic flowers that were visited by several or many pollinator species (87%). Most (56%) DMs were detected in community-level studies. DMs are mostly prevalent in ecosystems with limited food resources and mutualistic partners, and with high generalization levels. Nearly 30% of the species involved in DMs are threatened according to IUCN criteria, 68% of which are found on islands. The high prevalence of DM on islands paired with the threat status of island species suggest that the loss of a double mutualists and its cascading consequences may have a severe impact on community composition and functioning of fragile island ecosystems.

Keywords: pollination, seed dispersal, mutualism, global patterns
The forgotten fauna: native seed predators on islands

Jo Carpenter ¹, Janet Wilmshurst ¹, Kim Mcconkey ², Julian Hume ³, Debra Wotton ⁴, Aaron Shiels ⁵, Donald Drake ∗† ⁶

¹ Landcare Research – Lincoln, New Zealand
² National Institute of Advanced Studies, Indian Institute of Science Campus – Bangalore, India
³ Natural History Museum, London – London, United Kingdom
⁴ Moa’s Ark Pesearch – Paraparaumu, New Zealand
⁵ USDA APHIS – Fort Collins, CO, United States
⁶ University of Hawaii – Honolulu, HI, United States

Seed predation by alien rodents is frequently seen as a major threat to “naïve” island floras. However, studies examining seed predation by alien rodents on islands only rarely present their findings within the evolutionary and ecological context of historical seed predation by native species. Here, we demonstrate that islands have actually lost many native seed predators—such as parrots and finches—and these would have exerted considerable evolutionary and ecological pressures in insular pre-human ecosystems. Using examples from three iconic island groups—New Zealand, Hawaii, and the Mascarenes—we illustrate how these lost species could have shaped and influenced pre-human environments. We argue that these important interactions must be recognised if we are to truly understand the role of alien seed predators on islands, and whether they are replacing predation pressures once exerted by extinct species, or introducing truly novel seed predation pressures. More broadly, the loss of negative interactions like seed predation receives very little attention compared to the loss of positive interactions such as seed dispersal and pollination mutualisms. However, we argue that negative interactions are an integral part of any ecosystem, and must be acknowledged as such if we are to achieve holistic restoration frameworks for insular ecosystems.

Keywords: plant animal interactions, extinction, seed predation, conservation, invasive species

∗Speaker
†Corresponding author: dondrake@hawaii.edu
Threatened plant seeks pollinator (or when conservation practices prevent mutualistic interactions)

Aarón González-Castro*† 1, Felipe Siverio 2

1 Spanish National Research Council (CSIC) – Island Ecology and Evolution Research Group (IPNA-CSIC). C/ Astrofísico Francisco Sánchez, n3. 38206 La Laguna, Tenerife (Canary Islands), Spain
2 Canary Islands’ Ornithology and Natural History Group (GOHNIC) – La Malecita, s/n. 38480, Buenavista del Norte, Tenerife (Canary Islands), Spain

Island habitats are scenarios where ‘rare’ plant-animal mutualisms usually occur, and these interactions are key for maintenance of insular flora. However, the importance of mutualistic interactions seems to be overlooked when applying conservation practices. In this talk, we present results on a study about the pollination system of Lotus maculatus (Fabaceae), a plant species endemic to Tenerife (Canary Islands) whose pollinators have been unknown (or supposed to be birds) for a long time. This plant has also been object of several plans and actions for its conservation, but unfortunately with no plenty successful results. Here, we present a study on the pollination ecology of this legume that was carried out in both the only natural population and several plantations of L. maculatus. After more than 70 hours of direct observation, birds seemed to ignore the plant, whereas insects performed non-legitimate visits to its flowers. In this talk, we show that the Canary lizard Gallotia galloti is the most reliable animal for the pollination of these threatened plant. This lizard species not only is its most frequent flower visitor, but also is able to carry pollen grains and promote the fruit production of L. maculatus. Lastly, we expose some examples of conservation practices that, far away of helping the plant to recover, have prevented its reproductive success by avoiding almost the unique way for its pollination. Hopefully, increasing our knowledge and understanding of natural history of ‘rare’ mutualistic interactions on islands will be helpful to apply more efficient conservation practices.

Keywords: conservation practices, endemic lizard, endemic plant, Gallotia galloti, Lotus maculatus, pollination

*Speaker
†Corresponding author: arongcastro@gmail.com
The role of morphological traits in mutualistic interactions among plants and vertebrates in the Galápagos

Sandra Hervías-Parejo 1, Ruben Heleno 2, Manuel Nogales 3, Jens Olesen 4, Pablo Vargas 5, Anna Traveset 1

1 Mediterranean Institute for Advanced Studies (IMEDEA) – C/ Miquel Marquès, 21 - 07190 Esporles - Illes Balears, Spain
2 University of Coimbra – Department of Life Sciences, Centre for Functional Ecology, PO Box 3046, Coimbra 3001-455, Portugal
3 Department of Agrobiology and the Environment (IPNA) – Avda. Astrofísico Francisco Sánchez, 3 38206 - San Cristóbal de La Laguna Santa Cruz de Tenerife - Islas Canarias, Spain
4 Aarhus University – Department of Bioscience - Genetics, Ecology and Evolution Ny Munkegade 116 building 1540, 227 8000 Aarhus C, Denmark
5 Real Jardín Botánico (rjb) – Plaza de Murillo, 2. Madrid E-28014, Spain

Frugivory in lizards is often assumed to be constrained by body size; only large individuals are considered capable of consuming fruits, with the potential of acting as seed dispersers. We studied the entire radiation of lava lizards (Microlophus spp.) in the Galápagos to investigate whether frugivory is related to body size and explore the effect of seed ingestion on seedling emergence. Our results showed that fruit consumption was common regardless of body size, and that lizards are important seed dispersers throughout the year and across the whole archipelago. On the other hand, relying on floral morphology to assess pollination systems has been shown to underestimate the ecological service that novel mutualisms can provide. Although vertebrates with opportunistic food habits are common on islands, little is known about how effective they are as pollinators. We thus investigated whether native insectivorous and frugivorous birds act as pollinators by means of pollinator exclusion experiments, and then tested if birds show any preference for specific floral traits. Galápagos passerines are not specialized flower-visitors, either in feeding habits or in terms of morphology, but bird-flower visitation seems to be very common across the entire archipelago. Non-metric multidimensional scaling (NMDS) was used to evaluate the distribution of 16 flower morphology and nectar traits values along two main dimensions and measure the similarity between 26 native plants visited mostly by birds versus those by insects. We confirmed the pollination effectiveness of opportunistic birds. Quantitatively, birds were not important pollinators compared to insects. However, qualitative components of fitness improved when both birds and insects visited the flowers. We further reported two main flower types: entomophilous species, which are as expected to be mostly visited by insects, and a second group mostly visited by opportunistic birds that display mixed floral traits not fitting the classical ornithophilous syndrome. Flower shape, corolla size and nectar volume seem to be important for bird visitation in the plant community of the Galápagos. Our study underscores the importance of co-adaptation and floral diversification in non-specialized plant-visitor interactions.

Keywords: floral diversification, frugivory and seed dispersal, Microlophus spp., native Galápagos birds, pollination effectiveness

Speaker
A Fijian rainforest tree requires bats to open its flowers - the strange evolutionary case of chiropteropisteusis, a new pollination system

Sophie "topa" Petit *† 1, Annette T. Scanlon 1, Alivereti Naikatini 2, Tara Pukala 3, Russell Schumann 1

1 University of South Australia [Adelaide] (UniSA) – Mawson Lakes, Australia
2 University of the South Pacific (USP) – Suva, Fiji
3 University of Adelaide – Adelaide, South Australia, 5005 Australia, Australia

Dillenia biflora is an early succession tree of Fijian rainforests with important social and ecological values. Bats of three species trapped for two years on Vanua Levu (2009-2011) carried D. biflora pollen, including 70% of individual Notopteris macdonaldi, a cave-dependent threatened species. We examined the pollination of 19 trees on Vanua Levu in 2010-11 and 28 trees in November-December 2016 and June-July 2017 on Viti Levu, and determined that the large flowers with globose corollas did not open on their own and aborted when they remained closed (n = 100), indicating that they are not cleistogamous. Only flowers that were opened by bats resulted in fruits, as confirmed by video footage or direct observation (n = 11; all N. macdonaldi) and bite marks on corollas. Both self- and cross-pollination by hand after corolla removal produced fruits. Chiropteropisteusis (from the Greek "reliance on bats"- since pollination cannot take place before manipulation by bats) is a unique and previously undescribed pollination system. Dillenia biflora is closely adapted to pollination by N. macdonaldi, whose dentition appears to be perfectly suited for corolla removal. The evolution of this remarkable strategy, shielding nectar and reproductive organs from heavy rainfall and presumably excluding low-quality pollinators, implies a close overlap in distribution between the cave-dependent bat and the tree. The discovery has already been used to promote bat conservation in Fiji.

Keywords: conservation of bat, plant mutualism, evolution of unique pollination system, Fijian rainforests, pollination by bats, specialisation on bat pollination

*Speaker
†Corresponding author: sophie.petit@unisa.edu.au
Functional island biogeography - concepts and prospects
(Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional island biogeography: the next frontier in island biology, Holger Kreft</td>
<td>226</td>
</tr>
<tr>
<td>A global review of insular woodiness and its potential functional significance, Alexander Zizka [et al.]</td>
<td>227</td>
</tr>
<tr>
<td>Drivers of woody alien invasions across spatial scales in the Hawaiian Islands, Dylan Craven [et al.]</td>
<td>228</td>
</tr>
<tr>
<td>Predicting the functional trait composition of insular communities: an application to tropical reef fishes, Claire Jacquet [et al.]</td>
<td>229</td>
</tr>
<tr>
<td>Extinction-Driven Changes in Insular Frugivore Communities: Worldwide and in Mauritius, Julia Heinen [et al.]</td>
<td>230</td>
</tr>
</tbody>
</table>
Functional island biogeography: the next frontier in island biology

Holger Kreft *

1 Centre of Biodiversity and Sustainable Land Use, University of Göttingen – Büsgenweg 1 37077 Göttingen, Germany
2 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büsgenweg 1 37077 Göttingen, Germany

Island biota exhibit a fascinating diversity of form and function, and the specular morphological and behavioral oddities of island species compared to mainland relatives have received considerable scientific interest. Interestingly, all influential theories in island biogeography including the Equilibrium Theory and the General Dynamic Model of Island Biogeography do not consider such differences in species traits but instead treat all species as functionally equivalent. Such an ecologically neutral perspective clearly represents an oversimplification of the nature of island biota and limits our ability to understand the complex interplay of processes underpinning the distribution and diversity of island species and to predict how island species are affected by global environmental change. The large body of literature that exists on traits associated with dispersal and colonization, island syndromes (e.g. derived island woodiness, disharmony) or convergent trait evolution on different islands, however, currently lacks a coherent framework. Here, we argue that islands are particularly suited for a trait-based approach to study how different dispersal and environmental filters shape species assemblages at different spatial scales and how functional diversity emerges over time. We propose functional island biogeography, as an emerging sub-discipline that studies the distribution and composition of traits and functional diversity of island organisms across different organizational levels, and argue that this approach has great potential to link currently disparate areas of island research at the interface of functional ecology, biogeography and evolutionary biology. Moreover, functional island biogeography might offer new insights into the consequences of species losses and introductions on the functioning or island ecosystems. Building on recent case studies, we show how functional island biogeography can take advantage of existing eco-informatics tools, databases, and standardized field sampling protocols and how this opens new avenues of research by integrating information about species distributions, abundances, and functional traits.

Keywords: island syndromes, functional diversity, functional island biogeography, traits

* Speaker
A global review of insular woodiness and its potential functional significance

Alexander Zizka * 1, Frederic Lens 2

1 German Center for Integrative Biodiversity Research (iDiv) – Deutsche Platz 5e 04103 Leipzig, Germany
2 Naturalis Biodiversity Center [Leiden] (Naturalis) – Darwinweg 2, 2333 CR Leiden, Netherlands

The repeated evolution of woody growth form in herbaceous lineages on islands—insular woodiness—has long been recognized as an iconic island phenomenon. Several hypotheses exist on the drivers of the evolution and the adaptive value of derived woodiness on islands, including amongst others the release from climate seasonality and herbivore pressure. However, experimenting studies supporting these hypotheses are virtually absent and a synthetic global view on the biogeography and of correlates of derived insular woodiness is missing so far, mainly because there has been no global overview available on the identity and geographical distribution of derived woody species. Here we present a novel global derived woodiness database and combine it with the Global Inventory of Floras and Traits (GIFT), georeferenced species occurrences, and environmental data in a generalized linear modeling framework to identify global diversity patterns of derived insular woodiness and potential environmental correlates. Specifically, we test the fraction of derived woody species in the flora of oceanic islands globally and relate it to island characteristics including island age and isolation, climate, and herbivore presence. The results show a large difference in importance of derived woodiness across islands, supporting several archipelagos known for derived woodiness as diversity hotspots, especially Hawaii and the Canary Islands. Climate emerged as an important correlate of derived woody species diversity, across latitudes. However, the results suggest taxon-specific drivers among evolutionary lineages. In summary, we introduce a novel dataset on derived insular woody species and provide our first results on a global perspective on the biogeography and correlates of insular woodiness.

Keywords: insular woodiness, global biogeography, climate

Speaker
Drivers of woody alien invasions across spatial scales in the Hawaiian Islands

Dylan Craven *, 1, Jonathan Chase 2,3, Tiffany Knight 2,3,4

1 University of Gottingen – Gottingen, Germany
2 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig – Leipzig, Germany
3 Martin Luther University Halle-Wittenberg – Halle (Saale), Germany
4 Helmholtz Centre for Environmental Research - UFZ – Halle (Saale), Germany

Islands harbor a disproportionate amount of global plant diversity, emerging as a result of isolation and dynamic geophysical processes. However, isolation also facilitates alien invasions of islands, potentially changing community structure, displacing endemic species, and threatening the provisioning of vital ecosystem services. It is therefore critical to deepen current understanding of the factors that allow alien species to successfully establish in and dominate native forests on islands. Here we assess shifts in the relative importance of abiotic and biotic drivers, and their interactions, on the establishment and dominance of alien species across spatial scales in the Hawaiian archipelago. We used a database of more than 450 forest plots to examine patterns of woody plant invasions at local (< 1 ha) and regional scales (10,000 ha). We calculated phylogenetic distinctiveness (PD) of woody alien species as the mean phylogenetic distance to the nearest native species. We also gathered wood density and seed mass data for alien species to explain variation in their establishment and dominance. At each spatial scale, we fit phylogenetic multilevel Bayesian models to examine variation in establishment and dominance of alien species as a function of biotic (e.g., PD, wood density, and seed mass) and abiotic factors (e.g., precipitation, potential evapotranspiration (PET), soil age, and the human influence index (HII)) and their interactions. At the regional scale, we found that the probability of establishment increased with PET and that phylogenetically unique alien species were more likely to establish in areas with young soils or low precipitation, while those with heavy seeds established well in areas with high precipitation. At the local scale, the establishment of alien species was positively associated with PET, soil age, and HII. However, alien species exhibited different rates of establishment along gradients in precipitation, PET, and soil age that were strongly modulated by species’ phylogenetic uniqueness, wood density, and seed mass. Local dominance of alien species also was strongly context dependent; all biotic factors exhibited significant interactions with HII. Our results show that where woody alien species occur or where they are dominant is contingent upon the joint effects of abiotic and biotic filtering.

Keywords: biological invasions, spatial scales, forests, functional traits

*Speaker
Predicting the functional trait composition of insular communities: an application to tropical reef fishes

Claire Jacquet *, 1, 2, David Mouillot 3, Michel Kulbicki 4, Dominique Gravel 5

1 University of Zürich [Zürich] (UZH) – Rämistrasse 71 CH-8006 Zürich, Switzerland
2 Swiss Federal Institute of Aquatic Science and Technology [Dübendorf] (EAWAG) – Überlandstrasse 133 Postfach 611 CH-8600 Dübendorf, Switzerland
3 MARine Biodiversity Exploitation and Conservation (UMR MARBEC) – Institut de Recherche pour le Développement : UMR D 248, Institut français de Recherche pour l’Exploitation de la Mer : UMR9190, Université de Montpellier : UMR9190, Centre National de la Recherche Scientifique : UMR9190 – Centre de Sète UMR MARBEC SETE - Avenue Jean Monnet - CS3017134203 SETE CEDEX, France
4 Laboratoire d’Excellence CORAIL (LabEX CORAIL) – Institut de Recherche pour le Développement – Labex Corail58, avenue Paul Alduy66860 Perpignan CEDEX Tél. : 04 30 19 23 32 Email : contact@labex-coral.fr, France
5 Université de Sherbrooke [Sherbrooke] – 2500 boul. de l’Université, Sherbrooke, QC J1K 2R1, Canada

The Theory of Island Biogeography (TIB) predicts how area and isolation, through colonization and extinction dynamics, influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species–area relationship. We then compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs using a database compiling the presence/absence of 991 reef-associated fishes in 134 locations worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional trait and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. This framework open new perspectives in the fields of macroecology, functional ecology and biodiversity management since it highlights the potential impact of habitat destruction and fragmentation on the functional reorganization of species assemblages.

Keywords: island biogeography, functional traits, tropical reefs, allometric theory
Extinction-Driven Changes in Insular Frugivore Communities: Worldwide and in Mauritius

Julia Heinen *, W. Daniel Kissling † , Emiel Van Loon 3, Dennis M. Hansen 4

1 Center for Macroecology, Evolution and Climate (CMEC) – Universiteitsparken 15, Building 3, Floor 2, 2100, Copenhagen, Denmark
2 University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED) – P.O. Box 94248, 1090 GE Amsterdam, Netherlands
3 University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Computational Geo-Ecology (IBED-CGE) – Science Park 904, 1098 XH Amsterdam, Netherlands
4 Universit¨ at Z¨ urich, Zoological Museum and the Department of Evolutionary Biology and Environmental Studies (IEU) – Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Global change and human expansion have resulted in many species extinctions worldwide, but the geographic variation and determinants of extinction risk in particular guilds still remain little explored. Here, we quantified insular extinctions of frugivorous vertebrates (including birds, mammals and reptiles) across 74 tropical and subtropical oceanic islands within 20 archipelagos worldwide and investigated extinction in relation to island characteristics (island area, isolation, elevation and climate) and species’ functional traits (body mass, diet and ability to fly). Out of the 74 islands, 33 islands (45%) have records of frugivore extinctions, with one third (mean: 34%, range: 2–100%) of the pre-extinction frugivore community being lost. Geographic areas with more than 50% loss of pre-extinction species richness include islands in the Pacific (within Hawaii, Cook Islands and Tonga Islands) and the Indian Ocean (Mascarenes, Seychelles). The proportion of species richness lost from original pre-extinction communities is highest on small and isolated islands, increases with island elevation, but is unrelated to temperature or precipitation. Large and flightless species had higher extinction probability than small or volant species. Across islands with extinction events, a pronounced downsizing of the frugivore community is observed, with a strong extinction-driven reduction of mean body mass (mean: 37%, range: −18–100%) and maximum body mass (mean: 51%, range: 0–100%). The results document a substantial trophic downgrading of frugivore communities on oceanic islands worldwide, with a non-random pattern in relation to geography, island characteristics and species’ functional traits. This implies severe consequences for ecosystem processes that depend on mutualistic plant–animal interactions, including ecosystem dynamics that result from the dispersal of large-seeded plants by large-bodied frugivores. We suggest that targeted conservation and rewilding efforts on islands are needed to halt the defaunation of large and non-volant seed dispersers and to restore frugivore communities and key ecological interactions.

Keywords: Community, Extinction, Frugivores, Macroecology, Biogeography

*Speaker
†Corresponding author: W.D.Kissling@uva.nl
New insights into the assembly of island biota, filtering effects and disharmony (Symp.)

Contents

Disharmony of the world’s island floras, Christian König [et al.] .. 232
Drivers of orchid diversity, endemism and disharmony on islands, Amanda Taylor [et al.] .. 233
Using islands to understand the dynamics of ecological networks: 1st lessons from Hawai‘i, Natalie Graham [et al.] .. 234
Functional traits and life history dimensions explain filtering in island communities, Julian Schrader [et al.] ... 235
The influence of native species composition on the invasibility of island floras across spatial scales, Patrick Weigelt [et al.] .. 236
Disharmony of the world’s island floras

Christian König 1, Patrick Weigelt N 1, Amanda Taylor 1, Anke Stein 2, Wayne Dawson 3, Franz Essl 4,5, Jan Pergl 6, Petr Pyšek 6,7, Mark Van Kleunen 2,8, Marten Winter 9, Cyrille Chatelain 10, Jan Wieringa 11,12, Pavel Krestov 13, Holger Kreft 1

1 Biodiversity, Macroecology & Biogeography Group, University of Goettingen – 37077 Goettingen, Germany
2 Ecology, Department of Biology, University of Konstanz – 78457 Konstanz, Germany
3 Department of Biosciences, Durham University – South Road, Durham DH1 3LE, United Kingdom
4 Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna – 1030 Wien, Austria
5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University – Matieland 7602, South Africa
6 Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology – CZ-252 43 Přerovnice, Czech Republic
7 Department of Ecology, Faculty of Science, Charles University – Viničná 7, CZ-128 44 Prague, Czech Republic
8 Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University – Taizhou 318000, China
9 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig – 04103 Leipzig, Germany
10 Conservatoire et Jardin botaniques de la Ville de Genève – 1202 Genève, Switzerland
11 Naturalis Biodiversity Center [Leiden] – Darwinweg 2, 2333 CR Leiden, Netherlands
12 Wageningen University, Biosystematics Group – 6708 PB Wageningen, Netherlands
13 Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences – 690024 Vladivostok, Russia

Disharmony is a key concept in island biology that describes the biased representation of higher taxa on islands compared to their mainland source regions. Although differential colonization success of taxa is predicted by selective dispersal, environmental and biotic filtering, the empirical evidence for disharmony remains largely anecdotal. Here, we develop a novel method for delineating island source regions and present the first global quantitative assessment of island disharmony. We analyzed the overall compositional bias of 320 island floras and examined the over- or under-representation on islands for 450 plant families. We found that the compositional bias of island floras is strongly predicted by geographical and climatic island characteristics (isolation, area, geologic origin, temperature, precipitation), whereas the representation of individual families is only weakly related to family-specific characteristics (family size, family age, taxonomic group, functional traits), indicating that the taxonomic scope of the disharmony concept has historically limited its wider applicability. Our results provide a strong foundation for integrating disharmony with quantitative functional and phylogenetic approaches in order to gain a deeper understanding of assembly processes on islands.

Keywords: source regions, island syndromes, generalized dissimilarity modelling, assembly processes, ancestral area reconstruction

*Speaker
†Corresponding author: chr.koenig@outlook.com
Drivers of orchid diversity, endemism and disharmony on islands

Amanda Taylor ∗ 1, Gunnar Keppel 2, Patrick Weigelt 3, Gerhard Zotz 4, Holger Kreft 3

1 Biodiversity, Macroecology & Biogeography, University of Göttingen – Biodiversity, Macroecology & Biogeography Büssgenweg 1, Germany
2 University of South Australia (UniSA) – School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia
3 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büssgenweg 1, 37073, Germany
4 University of Oldenburg – Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114, D-26129 Oldenburg, Germany

The Orchidaceae are highly diverse (≈28,000 species) and have fascinated scientists for over 150 years, owing to their complex biotic interactions and attractive floral morphology. The extraordinary diversity and cosmopolitan distribution of orchids is often attributed to their ‘dust-sized’ seeds, which are produced in huge quantities and can disperse thousands of kilometers by wind currents. In this regard, orchids are expected to be proficient long-distance dispersers, which has been invoked to explain their sometimes rapid colonisation of volcanic islands or isolated archipelagos. Despite this, recent evidence suggests that patterns of orchid diversity on islands at the global scale are spatially complex, being under-represented on most islands, yet highly diverse on a small number of islands (e.g. in the western Pacific, Caribbean, La Réunion). This finding, however, may actually be an artefact of the analyses, which do not take into account orchid growth form, island type or the spatial arrangement of islands. Here, we present a comprehensive global analysis of orchids on 449 islands, relating patterns of orchid diversity and endemism to geophysical (island area, geographical isolation, age, topographic heterogeneity) and bioclimatic (forest cover, cloud cover, precipitation, temperature) island characteristics using Linear Mixed Effects Models. In contrast to previous studies, we split orchids into two functional growth forms (epiphytic and terrestrial) and determine whether their diversity patterns can be predicted by the same factors. We then compare drivers of total orchid diversity and endemism on islands, making the additional distinction between island types (continental, oceanic, continental fragment). Epiphytic and terrestrial orchids showed variable diversity patterns among islands, both being positively related to increasing units of cloud cover, temperature, and island area, yet responding differently to all other variables. Similarly, determinants of total orchid diversity and endemism varied across different island types, demonstrating a complex interplay of biogeographic and bioclimatic factors. These results illustrate that by considering key functional differences among growth forms, island types, and the spatial arrangement of islands, we can enhance our understanding of species diversity patterns on islands.

Keywords: endemism, disharmony, diversity, growth form, island type, orchids

∗Speaker
Using islands to understand the dynamics of ecological networks: 1st lessons from Hawaii

Natalie Graham *,† 1, Henrik Krehenwinkel 2, Pete Oboyski 1, Carl Boettinger 1, Rosemary Gillespie 1

1 University of California [Berkeley] – Berkeley, CA, United States
2 Universität Trier – Universitätsring 15D-54296 Trier, Germany

Interactions among species remain elusive in efforts to understand and forecast biodiversity dynamics. Towards this end, network-based approaches have the potential to simplify species interactions within a common formal mathematical framework. However, testing the utility of such approaches for understanding how environments are changing, requires simple systems. Islands, especially remote oceanic archipelagos, due to their discrete nature and isolation, coupled with the resulting accumulation of locally endemic species and high turnover in diversity, offer a microcosm for examining biodiversity dynamics with network modeling. Here, we examine ecological interactions of arthropods in the Hawaiian Islands. We use the age structure of the islands as snapshots in time to assess how these interactions change over time. We used quantitative NGS metabarcoding to provide molecular identifiers for diversity estimates (richness, abundance, turnover) in communities of different ages in Hawaii. We couple these data with historical information on species interactions that we are assembling of all known trophic interactions among organisms in Hawaii. Data included information from peer reviewed and grey literature, as well as information from the Hawaii Department of Agriculture and U.S. Geological Survey. We connected historical data with metabarcoding data by building a DNA-barcode reference library that allows each barcode to be connected to a known species. We then analyze the heterogeneity of various bipartite networks by studying their degree distribution and related network properties such as vulnerability (e.g. number of predators or parasitoids) and generality (e.g. number of resources). We find network structure changes according to substrate age and relative to composition of taxa at trophic levels, particularly as to how that composition reflects the number of non-natives. With the model we can make predictions for how interactions change over geological time, and how interactions are likely to change with the onslaught of non-native arrivals, focusing in particular on ecological tipping points.

Keywords: biotic interactions, networks, biodiversity, conservation, metabarcoding

*Speaker
†Corresponding author: n.graham@berkeley.edu
Functional traits and life history dimensions explain filtering in island communities

Julian Schrader *, Dylan Craven 1, Soetjipto Moeljono 2, Holger Kreft 1

1 Biodiversity, Macroecology & Biogeography, University of Göttingen – Göttingen, Germany
2 Forest Faculty, State University of Papua – Manokwari, West Papua, Indonesia

Dominant theories in island biogeography, such as the Equilibrium Theory of Island Biogeography (ETIB) and the General Dynamic Model (GDM), provide conceptual frameworks to quantitatively examine diversity patterns across islands. However, little is known about community assembly processes on islands or the mechanisms shaping it. The composition of island biotas likely reflects the net effect of multiple ecological processes on islands, such as dispersal and environmental filtering, which suggest that island communities assemble non-randomly and not neutrally, as assumed by the ETIB and GDM. Functional traits capture variation in ecological strategies among species and therefore can directly be linked to mechanisms associated with community assembly. However, trait-based frameworks were predominantly developed for mainland communities, and their application to islands remains limited. We developed and tested a trait-based framework to examine community assembly on islands. We used a novel dataset of woody plants on 40 small islands in the Raja Ampat Archipelago in Indonesia and collected functional traits (related to leaf, stem, seed, and whole-plant) that represent major dimensions of variation in plant form and function. When grouping traits into life history dimensions related to species dispersal and environmental adaptations, we found evidence that island communities were jointly shaped by dispersal constraints and limited niche space, whereas greater niche differentiation enhanced functional diversity of communities on larger islands. Our trait-based framework indicated that island communities are shaped by non-random assembly processes that vary with island area independent of species richness, thereby questioning whether neutral based models adequately describe dispersal and establishment dynamics of island floras.

Keywords: Functional biogeography, community assembly, functional dispersion, species composition

*Speaker
The influence of native species composition on the invasibility of island floras across spatial scales

Patrick Weigelt *,† 1, Dylan Craven 1, Wilhelmine Bach 1, Christian König 1, Wayne Dawson 2, Franz Essl 3, Mark Van Kleunen 5,4, Jan Pergl 6, Petr Pyšek 6,7, Marten Winter 8, Holger Kreft

1 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büsgenweg 1, 37077 Göttingen, Germany
2 Department of Biosciences, University of Durham – South Road, Durham, DH1 3LE, United Kingdom
3 Division of Conservation Biology, Vegetation and Landscape Ecology, University Vienna – Rennweg 14, 1030 Vienna, Austria
5 Ecology, Department of Biology, University of Konstanz – Universitätsstrasse 10, D-78464 Konstanz, Germany
4 The Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology – CZ-252 43 Pruhoinec, Czech Republic
6 The Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology – CZ-252 43 Pruhoinec, Czech Republic
7 Department of Ecology, Faculty of Science, Charles University – Viničná 7, CZ-128 44 Prague, Czech Republic
8 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig – Deutscher Platz 5e, 04103 Leipzig, Germany
9 Centre of Biodiversity and Sustainable Land Use, University of Göttingen – Büsgenweg 1, 37077 Göttingen, Germany

The establishment of alien species on oceanic islands is thought to be associated with the availability of empty niche space, reflecting abiotic and biotic filtering that generates species-poor, disharmonic native island biotas. Consequently, alien species that are distantly related to and are functionally distinct from native species should be more likely to establish on more remote islands (i.e., Darwin’s naturalization hypothesis). Here, we test these hypotheses for flowering plants at two spatial scales. First, at the island scale, we model the number and proportion of naturalized alien plant species per island as a function of socioeconomic factors, biogeographic characteristics of islands, and phylogenetic and compositional properties of their native floras. These properties include a quantitative measure of compositional disharmony, phylogenetic community metrics quantifying the degree of clustering of the native flora, and the mean phylogenetic distance between native and alien species of island assemblages. Our analyses were based on species composition data for a global set of more than 400 islands from the Global Inventory of Floras and Traits database (GIFT; http://gift.uni-goettingen.de) and the Global Naturalized Alien Flora database (GloNAF; http://www.glonaf.org). Second, at the local community scale, we model individual species occurrences of alien and native woody plant species. Using 9,655 forest plots from 101 Pacific islands, we consider the extent to which alien species’ traits and their relatedness to native species affect establishment. We expect a positive effect of compositional disharmony and phylogenetic clustering of native island floras on the number and proportion of naturalized alien plant species at the island scale. At the local community scale however, we anticipate an even stronger effect of phylogenetic distance between native and alien species on alien species establishment, because interactions (e.g., competition, facilitation) between alien and native species are likely to be strongest at this scale. Our results shed light on the invasibility of native plant communities on oceanic islands at different spatial scales, and may help to predict island assemblages that are most vulnerable to future invasions and ecological strategies that are associated with future plant invaders.

*Speaker
†Corresponding author: pweigel@uni-goettingen.de
Keywords: Darwin's naturalization hypothesis, invasions, naturalized species, phylogenetic structure, species composition
Island reptiles: the rich diversity of continental and oceanic islands (Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogeography of Gulf of Guinea Oceanic Island Reptiles, Luis Ceríaco</td>
<td>239</td>
</tr>
<tr>
<td>Biodiversity growth on the volcanic ocean islands and the roles of in situ cladogenesis and immigration: case with the reptiles, Jason Ali [et al.]</td>
<td>240</td>
</tr>
<tr>
<td>Ecological and evolutionary determinism in Greater Antillean reptiles, Graham Reynolds [et al.]</td>
<td>241</td>
</tr>
<tr>
<td>The evolution of an island phenotype: results from an experimental introduction, Anthony Herrel [et al.]</td>
<td>242</td>
</tr>
<tr>
<td>Lizard discoveries and rediscoveries in the New Caledonian region, Aaron Bauer [et al.]</td>
<td>243</td>
</tr>
</tbody>
</table>
Biogeography of Gulf of Guinea Oceanic Island Reptiles

Luis Ceríaco * 1

1 Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP) – Praça Gomes Teixeira, 4099-002 Porto, Portugal

Studies on the reptile fauna of the oceanic islands of the Gulf of Guinea had its initial impetus during the second half of the nineteenth century leading to the description of several new forms and the overall cataloguing of the occurring group of species. After this period, studies on the taxonomy and biogeography of this fauna in the region came to an almost complete halt. Since the early 2000’s, backed with molecular data, the reptile fauna of these islands started to be investigated, leading to the discovery and description of five new endemic species and several subspecies. Evidence shows that species diversity is even higher that currently documented on these islands, and additional work will reveal new species. These new discoveries have increased the percentage of endemic reptiles and contributed to a new paradigm on the biogeographic and evolutionary patterns for these islands. Similar to other taxonomic groups (e.g. mammals and amphibians) our data on reptiles shows several modes of post-colonization diversification on these islands – 1) single representatives of certain genera arrived at specific islands and speciated in situ; 2) sister-taxon occurring on two or more islands diversified through island-hopping colonization; 3) independent colonization of different islands by representatives of the same genus; and 4) populations diversified after sea-level changes fragmented some of the islands. Besides the endemics, at least three species represent recent introductions, possibly through anthropogenic mediated dispersal. Biogeographically, the reptile fauna of the Gulf of Guinea Oceanic Islands is composed by Western and Central African Groups, but there are noticeable differences between islands, with the southern islands having representatives of southern and eastern African clades. Our current knowledge of reptile diversity in these islands raises several hypotheses that need to be formally addressed and that will likely contribute to a better understanding of the biogeography, colonization and diversification processes in oceanic islands.

Keywords: Reptilia, Africa, new species, diversification, endemism

*Speaker
Biodiversity growth on the volcanic ocean islands and the roles of in situ cladogenesis and immigration: case with the reptiles

Jason Ali * 1, Shai Meiri 2

1 The University of Hong Kong (HKU) – Pokfulam, Hong Kong, Hong Kong SAR China
2 Tel Aviv University – Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

Theoretical models explaining biodiversity growth on the volcanic oceanic islands assume that in situ cladogenesis is a major contributor. To evaluate this proposition, we examined the extent to which the process, rather than immigration and within-archipelago anagenesis, shapes reptile diversity on the volcanic oceans islands (the animals belonging to this group are particularly well suited for carrying out such a test). Occurrence data were compiled for the 194 terrestrial reptile species occupying 53 volcanically-constructed middle- to low-latitude landmasses worldwide. These included forms on ‘model’ archipelagos for evolution such as the Galapagos, Lesser Antilles, Canaries, Comoros, and the Mascarenes. Using phylogenetic data, we deduced which species resulted from in situ cladogenesis. Statistical models were then used to establish whether an island’s area, age, maximum altitude, or isolation influenced the process. We also assessed whether the presence on a landmass of a non-sister congener exerted a control. Despite 273 native island-species records, there are only 8–12 cases of the phenomenon, including just two radiations. Diversification frequencies are uncorrelated with island area, age, maximum altitude, and isolation. Furthermore, there is no indication that the co-occurrence of non-sister congeners stymies the process. We therefore contend that in situ cladogenesis plays only a minor role in the accumulation of reptile diversity on individual oceanic islands; growth results primarily from immigration and between islands movements followed by anagenesis. This, however, is not a simple matter. Clusters that are far or challenging to get to have relatively few clades (3–8), some of which have many species (6–14), and all host at least one endemic genus. In these settings, diversity grows mainly by intra-archipelago transfer followed by within-island anagenetic speciation. In contrast, those island groups that are characterized by short distances and conducive transit conditions have been settled by many ancestor-colonizers (≥ 14), but each clade has few derived species (≤ 4). These archipelagoes lack especially distinctive lineages. Models explaining the assembly and growth of terrestrial biotic suites on the volcanic ocean islands thus need to accommodate these new insights.

Keywords: cladogenesis, island biogeography, biodiversity accumulation, reptiles, terrestrial vertebrates
Ecological and evolutionary determinism in Greater Antillean reptiles

Graham Reynolds *,† 1, Jonathan Losos 2

1 University of North Carolina Asheville (UNC Asheville) – 1 University Heights Asheville, NC 28804, USA, United States
2 Washington University in St Louis (WashU) – Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States

Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively few studies have examined how these radiations initiate. We suggest that *Anolis sagrei* (Brown Anoles) is a candidate for understanding the origins of the Caribbean *Anolis* adaptive radiation and propose that detailed investigation of the morphological and genetic variation of this widespread species can help to provide considerable insight into how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence, and, potentially, speciation. To investigate the extent of diversification across *A. sagrei*, the most widespread species of anoles, we undertook a genetic and morphological analysis of representative populations across the entire native range of the species, encompassing 295 individuals from 95 locations. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and larger number of toepads, on average. Such a trend follows expectations for an ecological release scenario, whereby populations freed from competition with close relatives evolve towards different morphological and ecological optima. Further, colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the West Indian boas, includes both small (<90cm) and large (4m) species occurring on the Greater Antilles and Bahamas Platform, with some islands supporting pairs or trios of body-size divergent species. Here we show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island- and species-specific factors.

Keywords: Anolis, boas, Caribbean, determinism, reptiles

*Speaker
†Corresponding author: greynold@unca.edu
The evolution of an island phenotype: results from an experimental introduction

Anthony Herrel ∗†1, Anne-Claire Fabre 2, Menelia Vasilopoulou-Kampitsi 3, Johannes Fouloupolos 4, Maxime Taverne 5, Duje Lisić 6, Zoran Tadić 6, Panayiotis Pafilis 7, Colin Donihue 8

1 UMR 7179 - Mécanismes adaptatifs et Évolution (MECADEV) – Museum National d’Histoire Naturelle - MNHN (FRANCE) – 57 rue Cuvier, 75231 Paris, France
2 Natural History Museum, London – United Kingdom
3 University of Antwerp – Antwerp, Belgium
4 University of Michigan – Michigan, United States
5 CNRS/MNHN – Centre National de la Recherche Scientifique - CNRS, Muséum National d’Histoire Naturelle (MNHN) – Paris, France
6 University of Zagreb – Zagreb, Croatia
7 University of Athens – Athens, Greece
8 Washington University, St. Louis – United States

Island lizards are often characterized by differences in morphology compared to their mainland counterparts. Although previous studies have documented differences in body size, head morphology, bite force and diet in insular environments, the selective pressures driving the evolution of this insular phenotype remain poorly known. Moreover, how fast lizards evolve these insular phenotypes has never been assessed. Here we provide data for *Podarcis* lizards in insular ecosystems of Croatia and Greece documenting the possible drivers of the observed phenotypic differences in insular lizards. Additionally, we provide data from a replicated introduction experiment addressing the issue of how fast these phenotypes evolve. Our results show that drivers of phenotypic variation are related to island size, food availability, population density as well as founder effects. Our results of the replicated introduction experiment show that these changes occur much faster than what is typically thought and suggest an important role for phenotypic plasticity as the initial response to changes in environmental conditions when confronted with island environments.

Keywords: lizards, diet, bite force, morphology, insularity, plasticity

∗Speaker
†Corresponding author: anthony.herrel@mnhn.fr
Lizard discoveries and rediscoveries in the New Caledonian region

Aaron Bauer *,† 1, Ross Sadlier 2

1 Villanova University – 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
2 Australian Museum – 1 William Street, Sydney, New South Wales 2010, Australia

Despite more than 150 years of herpetological research in New Caledonia, including 40 years of fine-scale sampling across the territory as a whole, novelties continue to be found that shed light on evolutionary patterns and processes in the southwest Pacific. The most noteworthy of these is the discovery of a new genus and species of giant gecko with semi-aquatic habits. It is not closely related to the other giant geckos (Rhacodactylus, Mniarogekko, and Correlophus), but rather is sister to Dierogekko, the smallest-bodied genus in the region. Morphologically, however, it resembles species of the New Zealand genus Dactylocnemis, one over very few other geckos globally to exhibit any aquatic tendencies. It also shares some features with the extinct Hoplodactylus delcourtii, the largest gecko that ever lived. This species had been presumed to have a New Zealand origin, but recent ancient DNA study has revealed that it is also part of the New Caledonian radiation. Among eugongylid skinks another giant species, Phoboscincus bocourti, has been rediscovered on several islands in the Île des Pins region. Preliminary data suggest that this species has highly restricted ecological preferences and occurs in very small populations that are particularly susceptible to habitat degradation and introduced mammals. Another skink, Epibator greeri, previously known from two specimens from near Koumac in the north of the island, has been rediscovered in the southern Grande Terre, 265 km distant. Its congener, E. insularis, was described in early 2019 from Île Walpole, 140 km distant from both the Île des Pins and the Loyalty Islands, and is the first endemic terrestrial vertebrate recorded from the island. These and other recent discoveries indicate that 1) current estimates of lizard species richness and endemism are underestimated, 2) there have been multiple in situ derivations of large body size in New Caledonian geckos, 3) some geckos and skinks exhibit unique ecologies that have helped conceal their existence or persistence, and 4) small, low-lying satellite islands play a role in both the generation and the conservation of lizard species in the New Caledonian region.

Keywords: Reptilia, gigantism, endemism, gecko, skink

*Speaker
†Corresponding author: aaron.bauer@villanova.edu
Biogeography

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution and relative age of endemism across islands worldwide, Simon Veron [et al.]</td>
<td>245</td>
</tr>
<tr>
<td>The Pacific basin as a laboratory to study islands disharmony, Anne-Christine Monmet [et al.]</td>
<td>246</td>
</tr>
<tr>
<td>Do endemic trees flora make endemic forests? Insights from New Caledonian forests, Philippe Birnbaum [et al.]</td>
<td>247</td>
</tr>
<tr>
<td>Understanding patterns of micro-endemism in chameleons: case of Furcifer nicosai (Reptilia, Chamaeleonidae) in the western dry forest of Madagascar, Miary Raselimanana</td>
<td>248</td>
</tr>
<tr>
<td>Out of the blue – the phylogeographic tale of freshwater amphipods (Malacostraca) from the Mediterranean Islands, Kamil Hupalo [et al.]</td>
<td>249</td>
</tr>
<tr>
<td>Changes in biota following volcanic eruption on Nishinoshima island among the Ogasawara islands in subtropical Japan, Kazuto Kawakami</td>
<td>250</td>
</tr>
<tr>
<td>Islands in the ice: patterns in and threats to the unique terrestrial biodiversity of the Antarctic, Peter Convey</td>
<td>251</td>
</tr>
<tr>
<td>Distribution of genetic diversity of the subantarctic crab Halicarcinus planatus: first marine alien reaching Antarctica, Karin Gérard [et al.]</td>
<td>252</td>
</tr>
</tbody>
</table>
Distribution and relative age of endemism across islands worldwide

Simon Veron 1, Rafael Govaerts 2, Maud Mouchet 3, Thomas Haevermans 4, Roseli Pellens 5

1 Institut de Systématique, Evolution, Biodiversité (ISYEB) – Museum National d’Histoire Naturelle - MNHN (FRANCE), École Pratique des Hautes Études [EPHE], Centre national de la recherche scientifique - CNRS (France), Sorbonne Universités, UPMC, CNRS, ESPE Université des Antilles Pôle Guadeloupe – CP 51, 57 Rue Cuvier - 75005 Paris, France

2 Kew Botanical Gardens (KBG) – Richmond, Surrey TW9 3AE, United Kingdom

3 Centre d’Ecologie et des Sciences de la Conservation (CESCO) – Muséum National d’Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique - CNRS, Sorbonne Universités, UPMC, CNRS – CP51, 55-61 rue Buffon, 75005, Paris, France

4 Institut de Systématique, Evolution, Biodiversité (ISYEB) – Muséum National d’Histoire Naturelle (MNHN), École Pratique des Hautes Études [EPHE], Centre National de la Recherche Scientifique - CNRS, Sorbonne Universités, UPMC, CNRS, ESPE Université des Antilles Pôle Guadeloupe – CP 51, 57 rue Cuvier, 75005 Paris, France, France

5 Institut de Systématique, Evolution, Biodiversité (ISYEB) – Muséum National d’Histoire Naturelle (MNHN), Centre national de la recherche scientifique - CNRS (France), Sorbonne Universités, UPMC, CNRS, École Pratique des Hautes Études [EPHE], ESPE Université des Antilles Pôle Guadeloupe – 45, rue Buffon - 75005, Paris, France

Islands are recognized by their remarkable rates of endemism so highly contributing to global diversity. One point remaining to be explored is the age of island endemics as it may provide new insights on the processes at the origin of island biota. We studied this issue by investigating the relative age of Monocots in islands worldwide, employing a measure of phylogenetic endemism and a method based on null models. We used the most comprehensive dataset on species occurrences in 4,306 islands, and identified 142 sites with neo-, paleo-, mixed and super-endemism. They were distributed all over the world, but more common at low latitudes. Mixed and super-endemism were the more frequent, putting in evidence the commonness of processes at all time scales at shaping present island biodiversity. Especially, we showed the importance of latitude, habitat availability and climate stability on the persistence of ancient taxa and on recent diversification events. These findings represent a great contribution to guide biodiversity conservation at global scale. These islands are irreplaceable both for the uniqueness and evolutionary history of their flora, so highly contributing to preserve "option values" and evolutionary potential.

Keywords: Global scale, paleo endemism, neo endemism, mixed super endemism, phylogenetic endemism, evolutionary potential

*Speaker

†Corresponding author: pellens@mnhn.fr
The Pacific basin as a laboratory to study islands disharmony

Anne-Christine Monnet *,† 1, Grandcolas Philippe 1, Thomas Haevermans 1, Roseli Pellens 1

1 Institut de Systématique, Evolution, Biodiversité (ISYEB) – Museum National d’Histoire Naturelle, Ecole Pratique des Hautes Etudes, Sorbonne Université, Centre National de la Recherche Scientifique – 43 rue Buffon, Paris, France

Biogeographers and naturalists have long observed and documented disharmony in islands, i.e. the compositional distinctiveness of islands compared to the mainland, but the first quantification of this concept is only very recent. A previous study on the world’s island floras showed a mixed effect of dispersal and environmental and biotic filtering, presenting disharmony as a useful entry point to understand the structure of island assemblages. In our study, we used the Pacific basin as a study system to test, at fine spatial grain, how the processes of dispersal and environmental and biotic filtering can result in disharmony in island faunas. We measured the diversity and proportion of families within the terrestrial orders of mammals, birds, and amphibians from their distribution ranges. The Pacific basin, bounded by continental margins, can bring new insights into disharmony because of the high diversity of geological and geomorphological attributes of its 1179 islands, and their complex history of dispersal events. This complex spatial matrix requires a robust statistical framework to disentangle the potential confounding spatial effects in the study area, the island characteristics, and the potential species pools. The first results of the models show how different potential source regions can shed light on the processes resulting in disharmony. Our work provides a contribution to a better understanding of spatial effects on disharmony.

Keywords: disharmony, Pacific, species pool, terrestrial

*Speaker
†Corresponding author: monnet.annechristine@gmail.com
Do endemic trees flora make endemic forests? Insights from New Caledonian forests

New Caledonia homes a rich and highly original flora with a species endemic rate > 75% and fascinating representation of relict taxa (gymnosperms and basal angiosperms). As a result, previous studies on the island flora have mostly focused on the taxonomy and biogeographical origins of this exceptional flora while few studies have attempted to understand the spatial distribution of species and the structure and diversity of species assemblages. Here, we present new insights into the diversity, structure, and ecology of trees communities derived from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN). NC-PIPPN consists of standardized forest inventories scattered throughout the New Caledonian main island. This network groups together ca. 450 plots including more than 70 000 occurrences of woody plants (trees, shrubs, lianas, tree ferns, and palms) belonging to more than 950 mostly endemics species. Most species are distributed along wide environmental ranges (ca. 900 m of elevation and 2200 mm of mean annual rainfall) and contrasted substrates (volcano-sedimentary, ultramafics and calcareous). Wide environmental ranges, however, do not significantly correlate with large spatial distribution or high local abundance. As in other places in the tropics, the diversity of the forests is support by a highly uneven species abundance distribution. Less than 20% of tree species account for > 50% of all known occurrences, while half of the tree species contribute to < 16% of occurrences. Local abundance is also independant to spatial distribution: some rare species at the island scale are locally abundant while some frequent species at the island scale are locally rare. The spatial distribution of species results in highly heterogeneous forests (high beta diversity) that contrasts with a relatively homogeneous structure of communities. Despite a highly original flora and a pattern of aggregative species distribution, New Caledonian forests are not so distinguishable from other forests in the South Pacific region. Our results suggest that the New Caledonian rainforests are mostly constrained by geographical features (area and isolation of the archipelago) and climatic features (e.g. cyclonic frequency) while the flora uniqueness poorly contribute to the forest structure.

Keywords: New Caledonia, diversity, communities, trees
Understanding patterns of micro-endemism in chameleons: case of Furcifer nicosiai (Reptilia, Chamaeleonidae) in the western dry forest of Madagascar

Miary Raselimanana * 1,2

1 Vahatra Association – BP 3972, Antananarivo 101, Madagascar
2 University of Antananarivo – BP 906, Antananarivo 101, Madagascar

In Madagascar, although chameleons in the genus Furcifer are considered as generalists and widely distributed, a few species occur in small geographic areas. Factors leading to such micro-endemism have been studied for the genus Brookesia but not for Furcifer. This study is an attempt to understand the distribution pattern of an endangered and micro-endemic species, Furcifer nicosiai, in the dry forests of western central Madagascar. Available literature about this species, including its distribution, ecology and phylogenetic relationships with other members of the genus, was reviewed. Additional ecological data on habitat and perch use were collected in the regional forests. The species is currently known in the protected areas of Bemaraha and Menabe Antimena. The results indicate that climate is a major factor influencing the distribution of F. nicosiai rather than soil substrate. This species is unknown beyond the northern part of Bemaraha, where there is increased humidity, or below the southern portions of the Menabe Antimena forests, where there is a decrease in rainfall. Even though Bemaraha and Menabe Antimena are separated by two major rivers (Manambolo and Tsiribina), these potential barriers have not limited dispersal. Based on preliminary survey data, F. nicosiai is unknown to occur in the Masoarivo forest blocks between the Manambolo and Tsiribina Rivers. Two hypotheses can be advanced: 1) during a period of range expansion, F. nicosiai only used the region of the existing Masoarivo forest as a dispersal corridor without establishing a population in this area or 2) the local Masoarivo population was subsequently extirpated associated with human-induced degradation of this forested zone. Further, the habitat and perch use of F. nicosiai showed a preference for more open forested habitats in largely intact areas, with trees and shrubs of less than 8 m high and 2.5 cm dbh. As these results highlight the apparent specificity of this species regarding microclimate and presumably habitat loss, conservation actions need to be reinforced in the area containing the known distribution of this species. Moreover, additional fieldwork needs to be conducted in the relict Masoarivo forests to verify its absence from this zone.

Keywords: Bemaraha, dispersal, Furcifer nicosiai, Menabe Antimena, protected areas

*Speaker
Out of the blue – the phylogeographic tale of freshwater amphipods (Malacostraca) from the Mediterranean Islands

Kamil Hupalo *, Fabio Stoch, Tomasz Mamos, Ioannis Karaouzas, Tomasz Rewicz, Anna Wysocka, Filipe O. Costa, Michal Grabowski

1 Department of Invertebrate Zoology and Hydrobiology, University of Lodz – Banacha 12/16, 90-237, Lodz, Poland
2 Evolutionary Biology and Ecology, Université Libre de Bruxelles – Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium
3 Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters – 46.7km Athens-Sounio Av., Anavissos 19013, Greece
4 Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk – Wita Stwosza 59 80-308 Gdansk, Poland
5 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho – Braga, Portugal
6 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho – Braga, Portugal

Malacostraca is a highly diversified and very speciose class of crustaceans. Out of the estimated 26,000 malacostracan species described so far, about 6,000 inhabit various freshwater habitats worldwide. The Mediterranean region has been recognized as one of the 25 most important biodiversity and endemism hotspots worldwide and its islands are considered to be the natural laboratories of the evolution. Even though, the Mediterranean region is housing roughly 6% of world freshwater taxa, the knowledge about the freshwater fauna of the Mediterranean basin is incomplete and the studies upon the freshwater biota on the Mediterranean Islands very scarce. The majority of the insular freshwater malacostracans is comprised of amphipods. In particular, family Gammaridae is known to be a major component of the epigean freshwater communities, playing a key trophic role in the freshwater communities in the Mediterranean Region. More than 600 individuals from nearly 150 sites from the Mediterranean Region were amplified for several mitochondrial and nuclear markers, which revealed an extraordinary level of yet undiscovered biodiversity with more than 50 distinct entities, tripling the number of currently described insular species. The reconstruction of time-calibrated phylogeny have supported the assumption that the evolution of the freshwater gammarid amphipods is strongly connected with the geological history of the region with many lineages present on the islands already for millions of years. Our studies on various islands like Sicily, Crete, Sardinia, Mallorca and Aegean islands, confirmed high level of overlooked diversity in the insular fresh waters. Given that the Mediterranean Islands are housing more than 25% of freshwater malacostracans of the entire Mediterranean Region, with more than a half of them being insular endemics and considering that the ongoing climate change and heavy anthropogenic activities makes the freshwater ecosystems the most vulnerable and prone to mass extinctions, we point out that there is an urgent need for raising the public awareness about the level of insular freshwater biodiversity, which should be one of the focal points of the island biology.

Keywords: Mediterranean islands, freshwater, Amphipoda, Malacostraca, Crustacea

*Speaker
Changes in biota following volcanic eruption on Nishinoshima island among the Ogasawara islands in subtropical Japan

Kazuto Kawakami * 1

1 Forestry and Forest Products Research Institute (FFPRI) – 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

Nishinoshima is a volcanic island among the Ogasawara Islands of subtropical Japan. In November 2013, a major eruption began on this island; continuing intermittent eruptions covered nearly the entire island with lava flows. These lava flows formed new land, increasing the area of the island from 27 to 295 ha. Before the 2013 eruption, six plant species and eight breeding seabird species were found on the island; however, their habitats were almost completely destroyed by lava flow. To estimate the impact of the eruption, I investigated floral and avifaunal changes using a land survey and aerial photography. In 2016, three plant species and three breeding seabirds were confirmed to have survived the 2013 eruption. By 2018, another three breeding seabirds were found. Plant distribution was limited to on and around a small remnant of the former island, although it recovered to some extent between 2016 and 2018. Seabird responses to the event differed among species, with some seabirds using the newly formed land for breeding. In particular, the breeding range of the brown booby *Sula leucogaster* expanded significantly, regaining its pre-eruption population size. Increases in population sizes among the masked booby (*Sula dactylatra*) and greater crested tern (*Sterna bergii*) are now greater than before the eruption, whereas those of the wedge-tailed shearwater (*Puffinus pacificus*) and brown noddy (*Anous stolidus*) have decreased. Although the eruption had a devastating impact on the biota of the island, some seabirds benefited from the expansion of land area and increased habitat diversity. Future monitoring of the changing biota on the new-formed land would provide empirical knowledge of species assembly on these isolated oceanic islands.

Keywords: volcano, eruption, avifauna

Speaker
Islands in the ice: patterns in and threats to the unique terrestrial biodiversity of the Antarctic

Peter Convey

1 British Antarctic Survey (BAS) – High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom

Antarctica may not conjure up pictures of islands, although clearly this description applies well to the remote sub-Antarctic and Southern Ocean islands. However, its terrestrial biodiversity is in large part restricted to tiny islands of ice-free habitat surrounded by vast expanses of inhospitable ice. Recent advances in understanding of Antarctica’s terrestrial diversity have emphasised that it is characterised by much stronger regionalisation and palaeoendemism than previously suspected. In an era of recent and predicted future regional climate change, this generates important new threats to the native biodiversity of the ice-free ‘islands’ of this still largely pristine continent. This presentation will briefly introduce the form, distribution and regionalisation of terrestrial diversity within and around Antarctica, along with recent modelling studies of future climate, and the effects this will have on the distribution and extent of ice-free ground, and the distribution of both native and non-native biota. The potential role of direct human activity as a driver of changing distributions will be emphasised. The study integrates the outcomes of recent research modelling current and future native and non-native species distributions in Antarctica with published models of future predicted climatic changes and associated changes in the extent of ice-free ground. The intensity of human activity providing linkages between otherwise biogeographically isolated regions is also superimposed to identify areas at particular risk of human-assisted biological invasions. Focusing on the Antarctic Peninsula region, the decades to the end of the 21st Century will see a rapid increase in the extent of ice-free ground, but the coalescing of currently isolated areas increases the risks of genetic diversity loss through homogenisation. Rapid southwards movement of both native and current and future invasive species is likely due to increasing environmental suitability. Some distinct biogeographic regions of the Antarctic Peninsula and continental coastline have overall sufficiently similar climates that human connectivity between them risks facilitating the inadvertent movement and establishment of biota. The study emphasises the urgent need for establishment of robust and practical biosecurity measures for both entry to and movement within the Antarctic region, backed by strong survey and monitoring effort.

Keywords: bioregionalisation, climate change, distribution modelling, connectivity, invasions, human assistance

*Speaker
Antarctica remains the most pristine and isolated continent on earth, surrounded by oceanographic, bathymetric, geographic and climatic barriers. Nevertheless the latter is being softened by the global warming, which is especially strong on the West Antarctic Peninsula. This warming enhances the probabilities of introduction of subantarctic alien species, and their subsequent proliferation. Shallow marine benthic communities around Antarctica exhibit high levels of endemism, gigantism, slow growth, longevity and late maturity. Several families of durophagous predators that are highly abundant and diverse in subantarctic shallow waters are almost completely absent in the Southern Ocean, this is the case of decapods. In 2015, a breeding female *Halicarcinus planatus* was reported in Deception Island (South Shetlands, West Antarctic Peninsula). This species is a brachyuran crab with a circum-subantarctic distribution. *Halicarcinus planatus* has a low bathymetric range, a planktonic larval duration of 45-60 days, and unlike other decapods, it tolerates temperatures near 0°C. This crab is able to reduce the magnesium concentration in its haemolymph that increases with the cold. The present project evaluates the level of genetic diversity of *Halicarcinus planatus* along in southern South-America as well as in Subantarctic Islands, determinates the phylogeographic structure of the species, the geographic scale at which the genetic differentiation operates and the connectivity pattern between remote island populations such as those from Falkland/Malvinas and Kerguelen Islands. The phylogenetic relationships are inferred from mitochondrial and nuclear haplotypes from the Magellanic Region, Falklands/Malvinas and Kerguelen Islands. The levels of diversity of *Halicarcinus planatus* populations are the highest in southern South-America, but tend to decrease toward the north, whereas in Subantarctic Islands they are significantly lower. The mitochondrial haplotype network is dense and strongly reticulated, showing no sign of population-size reduction in Patagonia. The phylogeographic relationships across the Southern Ocean indicate than the the species originally expanded it range in the Patagonia and dispersed to Falkland and Kerguelen Islands by long distance dispersal.

Keywords: circumpolar current, Falkland/Malvinas, Kerguelen, long distance dispersal, phylogeography
Ecology on Islands

Contents

What is biodiversity? How to better observe it and understand it in the 21st century?, Bruno Senterre [et al.] ... 254

Decreasing dominance of the endemic tree Uapaca bojeri drives the spread of Pinus in the sclerophyll Tapia forest, Madagascar, Manoa Herimino Rajaonarivelô [et al.] . 255

Lone fighters or team players? How co-occurrence patterns shape the patchy vegetation in arid volcanic environments, Pia Eibes [et al.] .. 256

Grassland habitat islands in urban areas: testing ecological theories, Béla Tóthmérész [et al.] .. 257

Diversity of grassland habitat islands: habitat and landscape filters of plant establishment in agricultural landscapes, Balázs Deák [et al.] .. 258
What is biodiversity? How to better observe it and understand it in the 21st century?

Bruno Senterre † 1,2, Tarah Padayachy 3,4, Michael Wagner 4

1 University of Seychelles, Island Biodiversity & Conservation Centre (UniSey, IBC) – P.O. Box 1348, Anse Royale, Mahé, Seychelles, Seychelles
2 Université Libre de Bruxelles [Bruxelles] (ULB) – Avenue Franklin Roosevelt 50 - 1050 Bruxelles, Belgium
3 Seychelles National Herbarium (SEY) – Bel-Etang Building, Room A2, Mont Fleuri, Victoria, Mahé, Seychelles
4 Plant Conservation Action group (PCA) – P.O. Box 392, Victoria, Mahé, Seychelles

Until the end of the 19th century, biodiversity data collection was focusing on species taxonomy, collecting specimens with few field notes often limited to the country of origin. As floras became more refined, biologists started to dedicate more effort to the data related to their species observations, adding notes on the exact locality and finally exact coordinates when GPS became available, just a few decades ago.

Nowadays, recording accurately georeferenced species observations has become the norm which, combined with gazetteers of georeferenced localities, allows to generate detailed species distribution maps essential for biodiversity studies. But biodiversity is more than being about species and where we find them. Recording accurate information on the habitat and on population state is still widely considered as optional metadata to species records (as was the exact locality for the 19th century botanist). As a result, species distribution maps contribute very little to knowledge on ecosystem distribution, very little on the species ecology, and very little on the stage of species invasion for different types of habitats of different regions.

Here we present an information system, developed in Seychelles but applicable worldwide, which is based on observation and databasing of biodiversity using four reference indexes: taxonomic, geographic (TDWG), ecosystemic and populational. The ecology of sites where biological observations are made is characterised by the detailed observation of 'ecosystem characters' (substrate, drainage, etc.) using standardized terminologies that are made available to the observer directly on the field through a smartphone-based data collection system designed with Open Foris Collect Mobile. We believe that such a system is the key to enabling the collection of virtual ecosystemic specimens leading to progress in ecosystem taxonomy. The data collection system is compatible with most of the habitat classification systems developed during the last few decades, by combining hierarchy and modularity, and by combining relative scales. We believe that a more complex vision of biodiversity focused on direct observations on the field will be essential to better understand biodiversity at species and ecosystem levels.

Keywords: ecosystemology, biodiversity, smartphone, field inventories, data collection
Decreasing dominance of the endemic tree Uapaca bojeri drives the spread of Pinus in the sclerophyll Tapia forest, Madagascar

Manoa Herimino Rajaonarivelô *† 1, Olivier Flores 2, Bruno Ramamonjisoa 1,3, Jean-Marc Bouvet 4

1 Ecole Doctorale de Gestion des Ressources Naturelles et Développement (EDGRND) – Ankatso 101, Madagascar
2 University of Reunion Island (UR) – Département de l’Ecologie Terrestre – 97430 Le Tampon, France
3 Ecole Supérieure des Sciences Agronomiques (ESSA) – Ankatso 101, Madagascar
4 Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] – Ambatobe B.P. 745, Madagascar

The sclerophyll Tapia forest, which is dominated by the endemic tree Uapaca bojeri (Phyllanthaceae), is the last remaining highland forest of Madagascar. The Tapia forest contributes food, wood fuel, medicine and more than 7% of the local population income. However, the forest is threatened by the spread of Pinus spp (primarily P. kesiya), which were introduced as a timber source. Well known as a soil acidifier, pine causes the exclusion of several species. The aim of this study was to determine which factors influence the spread of Pinus in the Tapia forest. This was achieved by observing the natural spread of pine in the area of Arivonimamo II. One hundred and twenty-five transects, each containing 3 plots of 100m2, were inventoried. In each plot, an inventory was done and environmental (biophysical and topographic) conditions were recorded. Generalized linear models were used to identify the explanatory variables linked to the spread of Pinus and to create an appropriate modeling framework. The results showed that the presence and abundance of Pinus is highly influenced by the importance value of U. bojeri, then by the propagule pressure. The invasion rate of Pinus increased i) as the dominance of U. bojeri decreased and ii) as the distance between the Pinus source and the nearest forest fragment decreased. Other factors, such as high cover of the herbaceous layer and slope, also contributed moderately as explanatory variables. Thus, the model obtained demonstrates the importance of considering the dominance of U. bojeri and the location of the pine source for improving predictions of pine invasions. However, invasive pines present a special challenge for management, as they are locally important forestry trees. To manage this landscape efficiently, the Tapia forest needs to be reforested with U. bojeri and the pine source should be removed when close to the forest.

Keywords: Exotic tree invasion, Pinus sp., Sclerophyll Tapia forest, Madagascar.
Lone fighters or team players? How co-occurrence patterns shape the patchy vegetation in arid volcanic environments

Pia Eibes *† 1, Severin Irl 2, Alessandro Chiarucci 3, Judith Eisenbacher 4, Richard Field 5, Tina Köhler 6, Ole Vetaas 7, Carl Beierkuhnlein 8

1 Institute of Physical Geography, Goethe-University Frankfurt (IPG) – Altenhöferallee 1, 60438 Frankfurt am Main, Germany
2 Institute of Physical Geography, Goethe-University Frankfurt (IPG) – Altenhöferallee 1, 60438 Frankfurt am Main, Germany
3 Department of Biological, Geological and Environmental Sciences, University of Bologna – Via Irnerio 42 Bologna, Italy
4 Geoecology, University of Bayreuth – Universitätsstraße 30 95447 Bayreuth, Germany
5 University of Nottingham, UK (UON) – University of NottinghamUniversity ParkNottinghamNG7 2RD, United Kingdom
6 Global Change Ecology, University of Bayreuth – Universitätsstraße 30 95447 Bayreuth, Germany
7 Department of Geography, University of Bergen – Postboks 7802 5020 Bergen, Norway
8 Department of Biogeography, University of Bayreuth – Universitätsstraße 30 95447 Bayreuth, Germany

Patchy vegetation is characteristic for harsh environments such as arid and semi-arid areas. Biotic interactions are suggested as one of the main drivers of patchiness in vegetation. The role of positive interactions between species (often referred to as facilitation) is even expected to increase with harshness and might have apparent impact on species composition of vegetation patches with harshness. However, differentiating facilitative interactions from further underlying mechanisms, e.g. microtopographic heterogeneity, is a non-trivial task. In this study we analyzed the co-occurrence relationships of vascular plant species that form a patchy vegetation in arid lapilli fields (tephra) from recent volcanic eruptions on La Palma, Canary Islands. Assuming a harshness gradient negatively correlated with elevation because aridity is high at low elevations, we expected pronounced co-occurrence (indicating positive biotic interactions) within patches close to the coast in contrast to more benign sites at higher elevations. Our study area offers the unique opportunity to analyze biotic interactions that lead to the formation of patchy vegetation, as lapilli soils are found at all selected sampling sites. We analyzed a total of 1280 shrubby vegetation patches in terms of species composition at 64 different elevational sampling points, ranging from the coast to around 700 m a.s.l. Further parameters regarding the shape, the biotic and the microtopographic neighborhood of the patches were recorded to consider their potential impact on the patch establishment, respectively. A co-occurrence analysis revealed that half of the analyzed species pairs relationships are distributed non-randomly. We furthermore even found three species which matched our strict requirements for a potential facilitator species and that likely enable the establishment of other species within individual patches. Subsequent linear models were used to analyze those patterns along an elevational gradient representing our assumed harshness gradient. Despite our expectations, we did not find the presumed harshness gradient towards coastal sites. This might rather highlight the homogeneity of the environmental conditions on dry lapilli fields on La Palma, even over long distances, than reject the predictions of the stress-gradient hypothesis.

Keywords: facilitation, Oceanic Island, plant plant interactions, stress gradient hypothesis, volcanic substrate

*Speaker
†Corresponding author: eibes@geo.uni-frankfurt.de
Grassland habitat islands in urban areas: testing ecological theories

Béla Tóthmérész *,† 1, Bernadett Hüse 2, Orsolya Valkó 2, Éva Katona 2, Balázs Deák 1

1 MTA-DE Biodiversity and Ecosystem Services Research Group – University of Debrecen, Department of Ecology H-4032 Debrecen, Egyetem tér 1., Hungary
2 University of Debrecen, Department of Ecology – University of Debrecen, Department of Ecology H-4032 Debrecen, Egyetem tér 1., Hungary

During the past millennia urbanization considerably changed natural ecosystems and formed new artificial habitat islands. Habitat loss and changes in the abiotic environment are seriously affecting urban biodiversity. We investigated the effect of urbanisation on the grassland vegetation islands in the city of Debrecen, East-Hungary (Europe). Along an urbanisation gradient we studied three kinds of habitat islands (vacant lots, urban parks, and peri-urban grasslands) with five spatial replicates of each habitat type, and five random plots in every site. We tested the following hypotheses: (i) species numbers increase with increasing island area in fragmented urban landscapes, as predicted by the theory of island biogeography; (ii) according to the increasing disturbance hypothesis lower species numbers and diversity, and higher ratio of weeds and disturbance-tolerant species is present in the city centre, (iii) the ratio of warm- and nitrogen-demanding species increases towards the city centre, (iv) we also tested if there is an increase in cosmopolitan and alien species and a decrease in species of the natural flora towards the city centre as predicted by the urban homogenization hypothesis. We found a positive species-area relationship for the permanent habitat islands, while such relationship was not detected for vacant lots. The most intensively disturbed urban parks harboured the lowest number of species and the lowest Shannon diversity. The ratio of weeds and disturbance-tolerants was the highest in the city centre (vacant lots and urban parks) likely due to the high-intensity trampling and soil disturbances. Plant species of the city centre were more drought-tolerant compared to peri-urban grasslands. The ratio of nitrogen-demanding species was the lowest in the urban parks, and the highest in the peri-urban grasslands due to the high nitrogen deposit in the cities. We found that the ratio of alien species were high both in vacant lots and peri-urban grasslands. Ratio of cosmopolitan species was significantly higher in urban parks compared to vacant lots and peri-urban grasslands. Our results suggest that urban habitats have some biodiversity conservation potential. But classical ecological theories may fail in urban environment. This is not just 'new' environment, but new prospect for ecological theories.

Keywords: urbanisation, gradient, urban homogenisation hypothesis, cosmopolitan, increasing disturbance hypothesis

*Speaker
†Corresponding author: tothmerb@gmail.com
Diversity of grassland habitat islands: habitat and landscape filters of plant establishment in agricultural landscapes

Balázs Deák *,† 1, Orsolya Valkó 1, Péter Török 2, András Kelemen 3, Béla Tóthmérész 4

1 University of Debrecen, Department of Ecology – University of Debrecen, Department of Ecology PO Box 400, Debrecen, H-4032 Hungary, Hungary
2 MTA-DE Lendület Functional and Restoration Ecology Research Group – University of Debrecen, Department of Ecology PO Box 400, Debrecen, H-4032 Hungary, Hungary
3 University of Debrecen, Department of Ecology – Egyetem tér 1., Debrecen H-4032 Hungary, Hungary
4 MTA-DE Biodiversity and Ecosystem Services Research Group – University of Debrecen, Department of Ecology PO Box 400, Debrecen, H-4032 Hungary, Hungary

Landscape and habitat filters are major drivers of biodiversity on small terrestrial habitat islands by influencing species dispersal and extinction events. In our study we aimed to assess the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small grassland islands embedded in agricultural landscapes. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence). We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary. The studied grassland islands were preserved by ancient burial mounds, which being sacred natural sites of the steppe region, can provide refuge for grassland habitats even in intensively used landscapes. We used model selection (Akaike’s Information Criterion) and fitted GLMs for all possible combinations of the studied explanatory variables to assess the effect of the landscape and habitat filters on the species richness and the percentage cover of the studied functional groups. We found that isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was proven to be an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope well with the increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness. Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.

Keywords: biotic interactions, dispersal filter, landscape composition, spatial connectivity, temporal connectivity

*Speaker
†Corresponding author: debalazs@gmail.com
Evolution on Islands

Contents

The eco-evolutionary feedbacks of why island forms so often differ from their mainland counterparts, Tim Coulson [et al.] ... 260

Island versus mainland evolution of a ‘great speciator’: contrasting patterns of morphological diversification in the white-eye radiation, Julia Day ... 261

A meta-analysis of mainland and island populations suggests a general isolation syndrome affecting traits, demography, and genetic diversity, Anna M Csergő [et al.] . . . 262

Plant mating systems on islands, Pierre-Olivier Cheptou ... 263

The biogeography of insular size evolution: the effects of isolation, island area and age on size changes in island plants, Matt Biddick ... 264

Evolutionary convergence in the flora of New Caledonia: correlated evolution and environmental contingencies of monocauly, David Bruy [et al.] .. 265

Understanding biodiversity dynamics by applying eco-evolutionary simulation models to insular systems, Juliano Sarmento Cabral [et al.] ... 267
The eco-evolutionary feedbacks of why island forms so often differ from their mainland counterparts

Tim Coulson * ¹, Sonya Clegg† ¹

¹ University of Oxford – Department of Zoology, 11a Mansfield Road, Oxford, United Kingdom

Closely related island and mainland forms of the same species often differ in morphology, life history, diet, and behaviour. In cases where the mainland form has colonised multiple different islands, patterns of independent phenotype evolution on each island are often remarkably similar, providing compelling evidence that evolution is often repeatable. Why is this? In this talk I will present a general framework that describes why release from predation and/or interspecific competitors can generate repeatable patterns of evolution. I will illustrate the theoretical framework with observations from a number of island systems. My approach uses evolutionarily-explicit structured models that capture eco-evolutionary feedbacks of interacting species, with analyses of these models demonstrating the circumstances under which adaptation to an island environment is likely to generate repeated patterns of evolution. My results help explain why island species so often differ from their mainland counterparts, and once again demonstrates the importance of islands in generating general ecological and evolutionary insight.

Keywords: Insular syndrome, island rule, intraspecific competition, vertebrates

*Speaker
†Corresponding author: Sonya.clegg@zoo.ox.ac.uk
Island versus mainland evolution of a ‘great speciator’: contrasting patterns of morphological diversification in the white-eye radiation

Julia Day *

1 University College London (UCL) – Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom

Islands and continents have had profound effects on how biodiversity is shaped. While evolutionary processes are predicted to follow different patterns in island and mainland radiations, the extent to which these geographical contexts influence evolutionary trajectories remains poorly understood. This is in part because few studies have focused on species-rich groups that are highly dispersive, and which can colonise continents and archipelagos over comparable timeframes. To address this knowledge gap, this talk will focus on Zosterops (white-eyes), a highly diverse, yet cryptic songbird genus that has been lauded as a ‘great speciator.’ Focusing on taxa from Africa-Arabia and associated islands, including the archipelagos of the western Indian Ocean and Gulf of Guinea, a comprehensive multi-locus phylogeny for the region was generated harnessing field and museum collections. The resulting hypothesis revealed exceptionally recent colonisation of the mainland (1.3-2.78 Ma) from Asia, with subsequent independent colonisations of islands, as well as highlighting substantial hidden diversity. Trait data from museum specimens was also generated and combined with the phylogeny using various comparative methods, allowing hypotheses of morphological evolution to be tested in a radiation spanning different geographic scales. Although an early burst and slowdown pattern of lineage accumulation for this radiation was identified supporting a previous study, this is coupled to apparent convergence on particular phenotypes. An absence of an adaptive signal of phenotypic evolution in Zosterops is not, however, unsurprising given the overall remarkably cryptic phenotypes exhibited in this genus. Notably, this phenotypic signal is shown to be strongly driven by mainland taxa, which is suggested to have been caused by niche divergence through repeated speciation between highland and lowland habitats, in which phenotypes appear to be highly constrained within particular environments. In contrast, island birds are generally not distinguishable from a random-walk model and have repeatedly expanded into novel areas of morphospace. It is suggested the different trajectory of evolution in insular Zosterops radiations arises from a lack of species competition, with an increase in ecological opportunity thereby providing a release to phenotypic constraints experienced by continental taxa.

Keywords: Disparity, through, time, cryptic species, diversification, niche divergence, competition

*Speaker
A meta-analysis of mainland and island populations suggests a general isolation syndrome affecting traits, demography, and genetic diversity

Anna M Csergő∗1,2, Maude Ea Baudraz 2, Kevin Healy 2,3,4, David Kelly 2, Ruth Kelly 2, Darren O’connell 2,5, Fionn Ó Marcaigh †2, Annabel L Smith 2, Jesus Villellas 2,6, Cian White 7, James Wilson 2, Qiang Yang 2,8, Yvonne M. Buckley 2

1 Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University – 1118 Budapest, Villány Street 29-43, Hungary
2 School of Natural Sciences, Department of Zoology, Trinity College Dublin – Dublin 2, Ireland
3 School of Natural Sciences, National University of Ireland Galway, Ryan Institute – Galway, Ireland
4 School of Biology, University of St Andrews – St Andrews, KY16 9TH, United Kingdom
5 UCD – Belfield, Dublin 4, Ireland
6 The National Museum of Natural Sciences, CSIC – Madrid, Spain
7 School of Natural Sciences, Department of Botany, Trinity College Dublin – Dublin 2, Ireland
8 Universität Konstanz – Universitätsstraße 10 78464 Konstanz, Germany

Oceanic (geographical) islands, due to their geographically isolated evolutionary histories and the general paucity of interacting populations, are extreme cases of geographic isolation. Populations of plants and animals on islands are subject to strong selection pressures that lead to important changes in their life history strategies, when compared with their mainland counterparts. While the island syndrome may be an extreme case of insularity, isolation syndrome can also emerge across various ecological islands on the mainland. We assessed the generality of the biogeographic mechanisms of isolation-by-distance and isolation-by-environment by developing the "GEOPOP: Geography of Populations" database, which currently contains 13500 population-level measurements of genetic, morphological and demography traits (7529 entries from oceanic islands and 6042 entries from the mainland) for 2035 georeferenced populations of plants and animals published in 160 studies. Using this database we extended the "island syndrome" concept to the "isolation syndrome", and tested to what extent the "isolation syndrome" is a general biogeographic driver of trait variation in mainland and island systems. Specifically, we tested to what extent differences in the mean and variability of traits, demography, and genetic diversity of populations were predicted by the geographic distance and the environmental distance between populations, and whether the effect of the isolation by distance is stronger within island systems. Our preliminary results support predictions from the "isolation syndrome" concept from isolated physical land or water bodies to more general, ecological-evolutionary processes paves the way towards a conceptual unification of the phenomenon of insularity across marine and terrestrial systems of ecological islands.

Keywords: ecological islands, environmental distance, fragmentation, GEOPOP, insularity, island syndrome

∗Corresponding author: csergo.anna.maria@gmail.com
†Speaker
Plant mating systems on islands

Pierre-Olivier Cheptou * 1

1 Centre d’écologie fonctionnelle et évolutive (CEFE) – CNRS : UMR5175 – Campus CNRS - 1919 route de Mende - 34293 Montpellier cedex 5, France

In the 1960’s, as part of the interest for island biology, one of main interest of botanists was to analyze plant mating system syndromes on islands. An influential model for interpreting mating system patterns is based on pollination processes and has been popularized under the verbal model ” Baker’s law ” (Baker, 1955). This ”law” proposes that ‘with a self-compatible individual a single propagule is sufficient to start a sexually reproducing colony, making its establishment much more likely than if the chance growth of two self-incompatible yet cross compatible individuals sufficiently close together spatially and temporally is required’ (mate availability). A second line of argument proposes that ‘self-compatible flowering plants are usually able to form some seed in the absence of visits from specialized pollinating insects, which may be absent from the new situations’ (pollinator availability). This model, addressing not only mating systems on islands but more generally of colonizing species (Baker and Stebbins, 1965) has been, since its publication controversial. In 1966, Carlquist argued that ‘if dioecious stocks immigrated to the [Hawaiian] islands, Baker’s Law must be in part abandoned’. More than fifty years later, estimates of plant mating system has accumulated, in particular thanks to the intensive use of molecular markers. In the recent years, theoretical models have also made predictions about the evolution of colonization ability and mating system, with mixed support for Baker’s law (Cheptou, 2012). In this talk, I will present the recent empirical results and theoretical predictions addressing the link between colonization and mating system and how it can help to think about mating system syndromes on islands. The results suggest that such island syndromes may not be unequivocal. Clarifying ecological scenarios are key to interpret plant mating systems on islands.

Keywords: Baker’s law – island syndrome – plants – data, theory

*Speaker
The biogeography of insular size evolution: the effects of isolation, island area and age on size changes in island plants

Matt Biddick * 1

1 Victoria University of Wellington – PO Box 600 Wellington 6140 NEW ZEALAND, New Zealand

Recent evidence suggests that, like island animals, island plants evolve in repeated and predictable ways on isolated islands. Of these changes, the most frequently is the evolution of island dwarves and giants (i.e. size changes). However, to date, no study has demonstrated how size changes in islands plants vary with geography. I documented size changes in plant species widespread across ten islands off of the east coast of New Zealand. I then asked how the strength of these changes varied as a function of isolation, island area, and island age. Overall results were consistent with the island rule in animals, that is, large plant dwarfism and small plant gigantism. However, the magnitude of size changes was not consistent among islands; suggesting that geography plays an important role in the evolutionary trajectory of island plants.

Keywords: loss of size diversity, insular evolution, size changes, gigantism, dwarfism

*Speaker
Evolutionary convergence, i.e. the rise of similar trait attributes among distantly related lineages, is a symptomatic island syndrome. Many tropical islands host remarkable cases of evolutionary convergence in plant forms and functions, among the most famous being secondary woodiness. In New Caledonia, an insular biodiversity hotspot in the Southwest Pacific, secondary woodiness is virtually lacking. Botanists who studied the flora, however mentioned the pervasive presence of monocaulous (unbranched) woody species in many distinct lineages, potentially illustrating a previously uninvestigated case of convergent evolution. Here, we study the evolutionary history of monocaulous species throughout the phylogeny of the New Caledonian woody genera. Using herbarium data, extensive field work and a compilation of the literature, we listed monocaulous species and scored six life-history and two environmental traits for 2114 New Caledonian woody self-supporting species. We constructed a phylogenetic supertree at genus level to investigate minimum number of times monocauly has evolved, phylogenetic signal and evolutionary correlates of monocauly in the island. We found at least 31 independent evolutionary events leading to monocauly, with 182 monocaulous species belonging to 41 genera, 30 families and 15 orders. This repeated evolution of the monocauly is revealed as a remarkable case of convergence in insular environments. Monocaulous species conform to few architectural models. The habit showed a nonrandom distribution over the phylogeny suggesting some prerequisites facilitating its evolution. Monocauly evolved preferentially in rainforest and on ultramafic substrate and triggered the evolution of both cauliflory and marked rhythmic growth, but no preadaptation was identified. Environmental contingencies explaining this notable convergence are suggested to involve rainforest structure and historical climatic stability, ultramafic (nutrient-poor and toxic) substrates and long-term absence of browsers. Finally, we ask whether the convergent evolution of monocauly in New Caledonia results from the loss of branching in the different lineages, as suggested by the few phylogenetic data available. Notably, secondary woodiness is also often associated with the evolution of unbranched rosette trees on islands, conforming to the Holttum or Corner architectural models. Are branches lost on islands? If so, why? Convergent evolution in plant architecture could represent an overlooked insular syndrome.

Keywords: convergent evolution, environmental contingencies, functional disharmony, monocauly, plant

*Corresponding author: david.bruy@ird.fr
†Speaker
architecture
Understanding biodiversity dynamics by applying eco-evolutionary simulation models to insular systems

Juliano Sarmento Cabral ∗† 1, Ludwig Leidinger 1, Daniel Vedder 1, Kerstin Wiegand 2, Robert J. Whittaker 3, Holger Kreft 4

1 Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), University of Würzburg – Emil-Fischer-Str. 32, 97074 Würzburg, Germany
2 Ecosystem Modeling, University of Göttingen – Büsgenweg 4, 37077 Göttingen, Germany
3 School of Geography and the Environment [Oxford] – South Parks Road, Oxford, OX1 3QY, United Kingdom
4 Biodiversity, Macroecology & Biogeography, University of Göttingen – Büsgenweg 1, 37077 Göttingen, Germany

Assessing mechanisms underlying biodiversity patterns requires appropriate study systems and methods. Islands offer ideal study systems, having sparked influential theories in both ecology and evolution. Recent advancements in mechanistic models for biodiversity dynamics are providing the tools to manipulate factors and processes at a spatiotemporal scale that is impossible in real-world experiments. We aim to promote the application of eco-evolutionary simulation models in insular settings to understand biodiversity dynamics in general. We present three experiments using spatially-explicit, eco-evolutionary, individual- and population-based models of plant metacommunities applied to oceanic islands to address different questions concerning biodiversity: 1) how genetic and ecological traits interact to generate different diversification dynamics; 2) what factors facilitate species invasions; 3) what are the effects of isolation on species diversification. In the experiment contrasting genetic and ecological traits, we found that a high degree of gene linkage causes lineages to show more niche conservatism, whereas low linkage results in populations with more flexible capabilities in ecological adaptation. In the experiment contrasting different scenarios of propagule pressure, disturbance and species pool to assess island invasibility, propagule pressure showed the strongest positive influence on the success of plant invaders. In the experiment contrasting isolation scenarios, we found that abiotic (e.g. distance, propagule pressure) and biotic (e.g. dispersal ability and species pool size) components of isolation increased the number of diversifying lineages and of species per diversifying lineage. These examples illustrate aspects of eco-evolutionary dynamics that are difficult to address in real-world systems, but that can be tackled with mechanistic models. Considering that there have been an increase of mechanistic models for large spatiotemporal scales in general, we believe that applying those models to island-like systems will provide valuable insights and will speed up our understanding of complex process interactions governing biodiversity dynamics.

Keywords: mechanistic simulation models, ecoevolutionary feedbacks, biodiversity research, ecological theory, island floras

∗Speaker
†Corresponding author: juliano.sarmento_cabral@uni-wuerzburg.de
Palaeo-biology / Palaeo-environments

Contents

Living on the edge: the effects of long-term climate change and fire activity on the remnant cool temperate rainforests of Tasmania (Australia), Michela Mariani [et al.] 269

Archipelagos in the Anthropocene - the legacies of past human-environment interactions on islands, Sietze Norder [et al.] ... 270

A new record of human settlement and past environmental change of the Comoros, Simon Haberle [et al.] ... 272

When were the Azorean Islands really colonized? A high-resolution paleolimnological approach, Pedro M. Raposeiro [et al.] ... 273

Biodiversity dynamics after human arrival on islands: are islands at an ecological crossroad?, Sandra Nogué [et al.] ... 275

Tracking human impact on island ecosystems by detecting "ghost taxa" with ancient DNA, Lea De Nascimento [et al.] ... 276

Archaeobiogeography of extinct rice rats (Oryzomyini) in the Lesser Antilles during the Ceramic Age (500 BC to 1500 AD), Marine Durocher [et al.] ... 278

Cylindraspis - from whence thou hast com’st to thine home? Mitogenomes give the answer, Uwe Fritz [et al.] ... 280
Living on the edge: the effects of long-term climate change and fire activity on the remnant cool temperate rainforests of Tasmania (Australia)

Michela Mariani *† 1,2, Michael-Shawn Fletcher 2, Simon Haberle 3, Jay Chin 3, Geraldine Jacobsen 4, Atun Zawadzki 4

1 University of Nottingham, UK (UON) – University of Nottingham ParkNottinghamNG7 2RD, United Kingdom
2 University of Melbourne – Parkville VIC 3010, Australia
3 Australian National University (ANU) – The Australian National University Canberra ACT 0200 Australia,
4 Australian Nuclear Science and Technology Organisation [Australia] (ANSTO) – New Illawarra Rd, NSW, Australia

In a world where ecosystems are threatened by climate change, environmental disasters, and human disturbances, acquiring information about past environmental change and species responses is crucial to develop meaningful conservation plans. Wildfires are one of the major ecosystem disturbances worldwide and are projected to increase under the future climate change scenarios, especially in temperate regions. In this context, wildfires threaten the remnant patches of Gondwana-linked temperate forests of the island of Tasmania, Australia. A case in point are Tasmanian montane rainforests, which form at high elevation (ca. 700-1000 m a.s.l.) and are dominated by endemic tree species, such as the UNESCO heritage-listed trees *Athrotaxis cupressoides*, *A. selaginoides* and *Nothofagus gunnii*. These tree species display several life history attributes that suggest they are poorly adapted to disturbance by fire, including poor seed dispersal, slow growth to maturation and high stand mortality. Montane rainforest communities have suffered major fire-driven landscape-scale losses over the last 200 years and today cover less than 5% of the Tasmanian landscape. To date, these populations have not shown post-fire recovery and it is still unclear whether this loss of resilience is the result of 1) an insufficiently long fire return intervals or 2) climate change is now precluding the recovery of these species to fire disturbance. Here, we use species distribution modelling and palaeoecology to assess and test the influence of long-term climate change on the resilience to fire of the endangered temperate montane rainforests of Tasmania. Thanks to our long-term approach, we managed to distinguish high resilience locations, where montane rainforest was able to withstand past fire disturbance through a phase of dry climatic conditions. Our study indicates that climatic change between 3000 and 4000 cal yr BP drove a disequilibrium between montane rainforest and climate across much of the range of this vegetation type. Current and future climate change are likely to shift the climatic envelope of this plant community further, suggesting that current high resilience locations may face a reduction in resilience.

Keywords: resilience, montane rainforest, Tasmania, Australia, climate change

* Speaker
† Corresponding author: michela.mariani@unimelb.edu.au
Archipelagos in the Anthropocene - the legacies of past human-environment interactions on islands

Sietze Norder 1,2, Ricardo F. De Lima 3, José María Fernández-Palacios 4, Lea De Nascimento 4,5, Maria Romeiras 6, Rui Elias 7, Luís Catarino 3, Luís Ceríaco 8,9, Rosalina Gabriel 7, Miguel Menezes De Sequeira 10, Sandra Nogué 11, Margarida Matos 2, Kenneth Rijsdijk 12, Marcus Hall 13, Paulo A.v. Borges 7

1 Centre for Ecology - Evolution and Environmental Changes / Azorean Biodiversity Group (cE3c) – Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
2 Institute for Biodiversity and Ecosystem Dynamics / Biogeography and Macroecology group (IBED / BIOMAC) – University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, Netherlands
3 Centre for Ecology - Evolution and Environmental Changes (cE3c) – Faculdade de Ciências, Portugal
4 Universidad de La Laguna [Tenerife - SP] (ULL) – S/C de Tenerife Spain, Spain
5 Landcare Research – Lincoln 7640, New Zealand
6 Instituto Superior de Agronomia / Facultade de Ciências – Universidade de Lisboa Campo Grande 1749-016 Lisboa, Portugal
7 Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group (cE3c) – Universidade dos Açores– Depto. de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
8 Villanova University [Philadelphia] – 800 E. Lancaster Avenue Villanova, PA 19085 USA, United States
9 Museu Nacional de História Natural e da Ciência (MUHNAC) – Rua da Escola Politécnica 58, 1250-102 Lisboa, Portugal
10 University of Madeira [Funchal] – Campus Universitário da Penteada 9000-390 Funchal, Portugal
11 University of Southampton – University Road, Southampton SO17 1BJ, United Kingdom
12 Institute for Biodiversity and Ecosystem Dynamics (IBED) – Kruislaan 318, 1098 SM Amsterdam, Netherlands
13 University of Zürich [Zürich] (UZH) – Rämistrasse 71CH-8006 Zürich, Switzerland

Human activities fundamentally alter ecosystems and landscapes from local to global scales. A key moment in making human impact truly global was the arrival of Columbus to the Americas in the late 15th century. The islands in the eastern Atlantic Ocean were crucial stepping-stones for this event and allowed for the subsequent emergence of global trade networks. These islands facilitated the biotic and cultural exchanges in the current epoch and as such, played a crucial role in the start of the Anthropocene. The aim of our study is to understand to what extent past human-environment interactions have shaped present-day landscapes and ecosystems on 30 islands in the eastern Atlantic. Volcanic oceanic islands are ideal "microcosms" for analysing the dynamics of past human impacts because the start of ecological processes and first human contact can be clearly defined. We integrate palaeo-ecological- and historical socioeconomic data spanning the duration of human settlement with a GIS-based analysis of anthropogenic, climatic and topographic variables. As a proxy for the state of island ecosystems and landscapes, we quantified the proportion of natural vegetation and calculated an index for the degree of landscape modification. Our findings show that present-day ecosystems and landscapes are the outcome of how humans have interacted with their environment over several centuries and sometimes millennia. However, contrasting pathways of past human-environment interactions result in diverse ecological and landscape outcomes. We conclude that an appreciation of the dynamics of local human-landscape interactions in the past provides a reference point for understanding current global change.

*Speaker
Keywords: Atlantic islands, ecological systems, environmental history, human activities, social, topography
A new record of human settlement and past environmental change of the Comoros

Simon Haberle *, 1, Susan Rule *, 2, Georgina Roberts *

1 Australian National University – CAP-CHL, 9 Fellows Road, The Australian National University, ACT 2600, Australia
2 Australian National University – Canberra, Australia
3 Monash University – Indigenous Studies Centre, Monash University, Clayton, Victoria 3800, Australia

As humans have colonized new places, they often initiate dramatic environmental change, even in the distant past. On remote islands, where levels of endemism are high, species and environments are often particularly vulnerable to the effects of introduced species like humans, and the plants and animals they deliberately or accidentally bring with them. The first study of the environmental history of the Comoros, a volcanic archipelago in the far western Indian Ocean, was conducted in 2016 in order to test the hypothesis that the Comoros were stepping stones for prehistoric human migration from east Africa to Madagascar. Sediment cores collected from the island of Anjouan along an altitudinal transect incorporated a range of ecologies including lowland swamp gardens (Ntrontroni Swamp - 10masl), upland dry forest (Dzialoutsounga Crater - 710masl) and upland wet forest (Lake Dzialandze - 925masl). Preliminary results from Ntrontroni Swamp show that a shift from a swamp forest and a lagoonal system to a peat swamp occurs around 1000 years ago soon after deforestation. Pollen and phytoliths identifying taro, cotton, rice and various spice trees (nutmeg, cloves) reveal the introduction of agricultural crops to the island as early as AD 900, with rice appearing around AD 1400. In addition, analysis is underway for all sites including ITRAX, humification, pollen, charcoal, and phytolith analysis and this will be reported on in this paper. This research will contribute to our understanding of patterns and chronologies of human colonisation, as well as the environmental impacts that humans have had. The pollen and charcoal records show dramatic changes in vegetation and fire regimes in the last 1500 years that are best explained through the influence of human settlement. Such studies of the past are extremely useful for better understanding and mitigating the effects of human-induced environmental change today.

Keywords: pollen, charcoal, palaeoecology, human migration, Comoros

*Speaker

sciencesconf.org:ib2019:253145
When were the Azorean Islands really colonized? A high-resolution paleolimnological approach

Pedro M. Raposeiro 1,*, Vítor Gonçalves 1, Erik J. de Boer 2, Valentí Rull 2, Arantza Lara 3, Armand Hernández 2, Sergi Pla-Rabés 4, Ana C. Costa 1, Helena Marques 1, Catarina Ritter 1, Maria Jesús-Rubio 2, Mario Benavente-Marín 2, Nora Richter 5, Linda Amaral-Zettler 6, Alberto Sáez 8, Roberto Bao 9, David Vázquez-Loureiro 9, Huang Yongsong 5, Miguel Matias 10, Cátia Pereira 11, Ricardo M. Trigo 12, Santiago Giralt 2

1 Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Pólo dos Açores & Faculdade de Ciências e Tecnologia da Universidade dos Açores – Ponta Delgada, Açores, Portugal
2 Institute of Earth Sciences Jaume Almera (ICTJA), Spanish National Research Council (CSIC) – Barcelona, Spain
3 Botanic Institute of Barcelona (IBB-CSIC) – Barcelona, Spain
4 CREAF - Ecological and Forestry Applications Research Centre – Cerdanyola del Vallès, Spain
5 Department of Earth, Environmental, and Planetary Sciences, Brown University – Providence, United States
6 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research – AB Den Burg, Netherlands
7 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam – Amsterdam, Netherlands
8 Department of Earth and Ocean Dynamics, Universitat de Barcelona (UB) – Barcelona, Spain
9 Centro de Investigaciones Científicas Avanzadas (CICA) - Facultade de Ciencias, Universidade da Coruña – Coruña, Spain
10 Museo Nacional de Ciencias Naturales (CSIC) – Calle José Gutiérrez Abascal, 2, 28806 Madrid, Spain
11 InBio/CIBIO, University of Évora – Largo dos Colegiãos, 7000 Évora, Portugal
12 Instituto Dom Luiz (IDL), Faculty of Sciences, University of Lisboa – Lisbon, Portugal

The discovery and colonization of islands are crucial to understand the colonization patterns of new territories, the spread of languages, past economic trade, diffusion of past societal and knowledge during the past millennium. However, historical and archaeological records are scarce and incomplete on many islands, including the Azores, hampering the determination of the exact age of first human settlements. The most commonly accepted date for the first settlement on the Azores islands based on historic documents is 1432 A.D. However, a recent environmental reconstruction of São Miguel island that covers the last 730 years clearly shows that the first-settlements of this island took place by ca. 1287 A.D., approximately 150 years prior to the currently recognized colonization. Here we present a new perspective, using both classical (e.g. pollen and spores from higher plants, fungal spores, algae remains, charcoal particles, plant and animal fragments) as well as cutting-edge approaches (e.g. ancient DNA and faecal related organic compounds) to unequivocally trace the first signs of human activity preserved in long continuous sequences of natural sedimentary archives. Our objective was to perform robust high-resolution climate and environmental reconstructions for the last millennium in order to pinpoint the date that the first settlers arrived, the timing of island occupation and the spread of new settlements. These reconstructions were performed using a multiproxy characterization of sedimentary lacustrine records located on five islands distributed in an NW-SE transect. Preliminary data constrains stratigraphic points that characterize two phases of occupation of Azorean Islands. First human activities started on several islands with the introduction of cattle, extractive forestry and cereal cultivation, followed by extensive deforestation and the large-scale introduction of exotic species.

*Speaker
on land and into lakes (e.g. exotic plant species and fish introductions), which shaped the present-day lake ecosystems.

Keywords: Paleolimnology, Azores, classical and cutting, edge approaches, colonization patterns, climate and environmental reconstructions
Biodiversity dynamics after human arrival on islands: are islands at an ecological crossroad?

Sandra Nogué * 1, Ana M. C. Santos 2, Lea De Nascimento 3,4, Janet Wilmshurst 3, Erik J. de Boer 5,6, Simon Haberle 7, Robert J. Whittaker 8, José María Fernández-Palacios 4, Kathy Willis 9, Manuel Steinbauer 10

1 School of Geography and Environmental science (UoS) – University of Southampton, University Road Southampton SO17 1BJ, United Kingdom
2 Department of Life Sciences, University of Alcalá – 28805 Alcalá de Henares, Madrid, Spain
3 Long-Term Ecology Laboratory, Landcare Research – Manaaki Whenua, 54 Gerald Street, Lincoln 7608, New Zealand
4 Universidad de La Laguna – Island Ecology and Biogeography Group, Faculty of Science, Biology Section, Avda. Astrofísico Francisco Sánchez, s/n, Aptdo. 456, La Laguna 38200, Santa Cruz de Tenerife, Spain
5 Institute for Biodiversity and Ecosystem Dynamics – University of Amsterdam, Amsterdam, Netherlands
6 Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) – Lluís Solé i Sabaris s/n. 08028 Barcelona, Spain
7 Australian National University – CAP-CHL, 9 Fellows Road, ACT 2600, Australia
8 School of Geography and the Environment, University of Oxford – Oxford OX1 3QY, UK., United Kingdom
9 Department of Zoology – University of Oxford, OX2 7LE, United Kingdom
10 Geozentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University of Erlangen-Nürnberg (FAU) – Loewenichstr. 28, 91054 Erlangen, Germany

Human activities are increasingly dominating ecological systems and are often considered the main drivers for ecosystems change. The need to quantify the speed of human impacts in ecosystem dynamics have caused a controversial debate on natural baselines and the start of the Anthropocene. However, it is now increasingly evident that hardly any "natural" baselines are available for timescales with sufficient available data (e.g. thousands of years). Oceanic islands are rare exceptions, many of which have been sheltered from human impacts due to their isolation from the continent. Oceanic islands thus provide repeated, complex systems with an excellent opportunity to quantify the direct effect of human impacts after their arrival on the islands (pre-human baseline) on the local vegetation. Here, we tackle this challenge using palaeoecological datasets of fossil pollen time-series covering the past 5000 years. We gathered these datasets from Neotoma database and other published sources. We selected oceanic islands that together covered large gradients of: latitude, elevation, size, distance from continent, and human arrival times. We calculated a "system state metric" using the pollen time series and a combination of Bray Curtis similarity analysis and ordination analysis (NMDS). We also applied a breaking point analysis to calculate whether the vegetation composition changed abruptly or otherwise followed a constant transformation over time. Preliminary results, showed that in many islands there is a vegetational compositional change that seems to start around human arrivals. However, we found that in other islands major vegetation changes may happen without human presence on the island. These independent records on multiple island ecosystems will inform a novel model framework to simultaneously quantify ecosystem dynamics and structure prior to human arrival (and its associated impacts), and also those that occurred after human arrival; this will allow identifying the main changes that humans have caused in island ecosystem processes.

Keywords: Holocene, Oceanic Islands, Palaeoecology, pollen records

*Speaker
Tracking human impact on island ecosystems by detecting "ghost taxa" with ancient DNA

Lea De Nascimento *† 1,2, Jamie Wood 2, José María Fernández-Palacios 1, Juli Caujapé-Castells 3, Constantino Criado 4, Ruth Jaén-Molina 3, Agustín Naranjo-Cigala 5, Sandra Nogué 6, Janet Wilmshurst 2

1 Universidad de La Laguna – Island Ecology and Biogeography Group, Faculty of Science, Biology Section, Avda. Astrofísico Francisco Sánchez, s/n, Aptdo. 456, La Laguna 38200, Santa Cruz de Tenerife, Spain
2 Landcare Research – Long-Term Ecology Laboratory, Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
3 Jardín Botánico Canario "Viera y Clavijo" - Unidad Asociada al CSIC – Camino del palmeral 15, Tafira Alta, 35017 Las Palmas de Gran Canaria, Las Palmas, Spain
4 Universidad de La Laguna – Department of Geography and History, Faculty of Humanities, Geography and History Section, C/ Prof. José Luis Moreno Becerra s/n, Aptdo. 456, La Laguna 38200, Santa Cruz de Tenerife, Spain
5 Universidad de Las Palmas de Gran Canaria – Department of Geography, Faculty of Geography and History, Calle de Pérez del Toro 1, 35004 Las Palmas de Gran Canaria, Las Palmas, Spain
6 University of Southampton – Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Islands ecosystems have been transformed since the early stages of human settlement. Loss of natural vegetation, and in particular forest cover, is one of the main consequences of human colonization. However, it is difficult to assess the rate of such deforestation processes, especially on islands that have a long history of human occupation. Understanding the transformative processes that island ecosystems have experienced is essential for their effective management and preservation today. The analysis of palaeoecological records and fossil indicators provides the long-term perspective needed to study these processes, while delivering different ecosystem baselines to be used by managers as references for restoration and conservation actions. Within Macaronesia, the Canary Islands were the earliest islands to be colonized by humans (at least 2000 years ago) and the only islands to undergo a double colonization (aborigines and Europeans). However, the precise timing and extent of human impacts on Canarian ecosystems are poorly known, and consequently restoration and conservation management targets usually fail to incorporate pre-human ecosystems. In addition, palaeoenvironmental reconstructions can be limited due to poor conditions for fossil preservation at certain sites, i.e. "silent sites", and under-representation of several key taxa in the fossil record, i.e. "ghost taxa". Although there is evidence for human induced changes in forest composition, under-representation of certain key taxa such as Lauraceae (the dominant trees in the Canarian evergreen laurel forest) prevent us from determining the true forest composition or confirming the former distribution of forest types at local or regional scale. Combining the analysis of palaeoenvironmental DNA (PalEnDNA), i.e. ancient DNA from disseminated genetic material, and traditional palaeoecological proxies, we aim to improve the detection of such "ghost taxa", but also increase the taxonomic resolution to obtain better reconstructions of past Canarian forests. For the first time we isolate PalEnDNA from Canary Island sedimentary deposits at forest sites. Detection of Lauraceae PalEnDNA within the sedimentary sequences indicates when these trees have been components of the forest and show how PalEnDNA can be an effective tool in the identification of "ghost taxa" from palaeoecological records on similar island environments.

*Speaker
†Corresponding author: ledenas@gmail.com
Keywords: ancient DNA, Canary Islands, laurel forest, palaeoecology, past vegetation
Archaeobiogeography of extinct rice rats (Oryzomyini) in the Lesser Antilles during the Ceramic Age (500 BC to 1500 AD)

Marine Durocher ∗†, Jose Utge 4, Violaine Nicolas 2, Allowen Evin 3, Sandrine Grouard 1

1 Archéozoologie, archéobotanique : sociétés, pratiques et environnements (AASPE) – Museum National d’Histoire Naturelle, Centre National de la Recherche Scientifique : UMR7209 – Muséum national d’Histoire naturelle - Case postale 56 - 55 rue Buffon - 75005 Paris, France
2 Institut de Systématique, Evolution, Biodiversité UMR 7205 (ISYEB) – Museum National d’Histoire Naturelle, Ecole Pratique des Hautes Etudes, Sorbonne Université, Centre National de la Recherche Scientifique – 2 place Eugène Bataillon, CC065,34095 Montpellier, Cedex 5, France, France
3 Institut des Sciences de l’Évolution de Montpellier (ISEM) – Centre de Coopération Internationale en Recherche Agronomique pour le Développement [IRD] : UR226, Centre National de la Recherche Scientifique : UMR5554 – Place E. Bataillon CC 064 34095 Montpellier Cedex 05, France
4 Eco-Anthropologie et Ethnobiologie (EAE) – Museum National d’Histoire Naturelle, Université Paris Diderot - Paris 7, Centre National de la Recherche Scientifique : UMR7206 – Dpt Hommes Natures Sociétés 57 rue Cuvier 75231 Paris Cedex 05 Musée de l’Homme, place du Trocadéro 75016 Paris, France

In the Lesser Antilles, rice rats (Oryzomyini tribe) – now extinct in the region – were one of the few non-flying terrestrial mammals to be present and eaten by the pre-Columbian ceramic societies inhabitants (between 500 BC to 1500 AD), before the arrival of European settlers. Rice rats have a dual interest, both biological and cultural. As extinct taxa, their morphologies, as well as their past distribution and diversity in the region are poorly known, yet they allow to study the diet of pre-Columbian humans. We aim to characterize the spatiotemporal distribution of rice rats, complete their systematics and taxonomy, and assess their relationship with humans. We used an integrative approach combining geometric morphometrics, genetics and zooarchaeology. Using a two-dimensional sliding semi-landmark based geometric morphometric approach, we quantified and visualized tooth size and shape differences between chronological cultural periods and between islands. To test whether the phenotypic groups reflect environmental adaptations or phylogenetic history, we conducted ancient DNA analysis on the mitochondrial genome (Cytochrome b gene) of 70 archaeological specimens originating from all studied islands. From the 659 archaeological specimens representing seven different islands of the Lesser Antillean archipelago, three morphological groups emerged. They were geographically consistent and present from the beginning of the Ceramic Age: one in Saint-Martin in the northern part of the archipelago characterized by very small molars, one in Martinique in the south, and one in the central region (i.e. Antigua, Barbuda and the Guadeloupe archipelago: Basse-Terre, Grande-Terre and Marie-Galante). Within the central region each island has its own morphotype. Our morphometrics data reveal a archaeobiogeographic signal defined by a clear pattern of past distribution of Oryzomyines in the archipelago, stable over time. It suggests a limited human influence on the spatiotemporal distribution of this rodent. The wet and hot environmental condition typical of the tropical regions do not favor DNA preservation and likely preclude DNA analysis of the ancient remains we have studied so far. Yet, the phenotypic geographic distribution appeared consistent with DNA clusters from previous studies and indicates that new taxonomic classifications should be designated for the extinct archaeological populations of Saint-Martin and Marie-Galante.

∗Speaker
†Corresponding author: marine.durocher@mnhn.fr

sciencesconf.org:ib2019:253980
Keywords: geometric morphometrics, genetics, teeth, Rodents, island evolution
Cylindraspis - from whence thou hast com’st to thine home?
Mitogenomes give the answer

Uwe Fritz *, 1, Eva Graci´ a Mart´ ınez 2, Patrick D. Campbell 3, Silke Schweiger 4, Christian
Kehlmaier 1

1 Museum of Zoology, Senckenberg Dresden – A. B. Meyer Building, 01109 Dresden, Germany
2 Ecology Area, Department of Applied Biology, Miguel Hernández University – Av. de la Universidad,
Torreblanca, 03202 Elche, Spain
3 Natural History Museum – Department of Life Sciences, Darwin Centre (DC1), London SW7 5BD, United
Kingdom
4 Naturhistorisches Museum – Burgring 7 1014 Wien, Austria

Cylindraspis is a genus of extinct giant tortoises endemic to the Mascarene Islands. Recently it
has been suggested that humans have introduced these tortoises, spurring a debate about their ori-
gin. To contribute further insights into this matter, we produced almost complete mitogenomes for all
five currently recognized species. We applied optimized NGS protocols for ancient DNA approaches,
including single-stranded library preparation, and in-solution hybridization capture. We included the
resulting data in phylogenetic, molecular clock, and biogeographic analyses using mitogenomes of repre-
sentatives of all extant genera and species groups of tortoises (Testudinidae) with all extant taxa from
Madagascar and the Seychelles represented. The mitogenomes of all five Cylindraspis species were
deeply divergent from those of any other extant tortoise. In phylogenetic analyses of the mitogenomes,
all Cylindraspis species are monophyletic and sister to a clade containing tortoise taxa from Africa,
Asia, Madagascar, the Seychelles, and South America. The divergence date inferred for Cylindraspis
exceeds by far the age of the Mascarene Islands, while the divergence dates for the mitogenomes of two
species pairs (C. indica vs C. inepta and C. peltastes vs C. vosmaeri) suggest dispersal and vicariance
within the Mascarenes, explaining also the former occurrence of two sympatric species on Mauritius
and Rodrigues. Biogeographic analyses including our complete data set suggest that the ancestor of
Cylindraspis lived in Africa and arrived on the Mascarenes circumventing Madagascar. According to
our data, the Mascarene giant tortoises were definitely not introduced by humans.

Keywords: ancient DNA, biogeography, Cylindraspis, giant tortoise, Mascarenes
Trait dependent diversification on islands (Symp.)

Contents

A global review of insular woodiness and its impact on diversification, Frederic Lens [et al.] ... 283
The dark side of the island rule or how traits acquired on islands make endemic species more vulnerable to extinction, José María Fernández-Palacios ... 284
Detecting trait-dependent diversification, Leonel Herrera-Alsina [et al.] 285
Frugivory-related traits promote island radiations of tropical palms, Renske E. Onstein [et al.] .. 286
The role of traits in non-adaptive diversification: some insights from a continental archipelago., Anna Papadopoulou [et al.] .. 287
A global review of insular woodiness and its impact on diversification

Frederic Lens *† 1, Alexander Zizka 2

1 Naturalis Biodiversity Center [Leiden] (Naturalis) – Darwinweg 2, 2333 CR Leiden, Netherlands
2 German Center for Integrative Biodiversity Research (iDiv) (iDIV) – Deutscher Platz 5e, 04103 Leipzig, Germany

Woody species not only dominate most continental ecosystems, but also (sub)tropical islands are known to be proportionally more woody than the flora of adjacent continents. It is unclear, however, why some plants are woody and others herbaceous, probably because wood formation is a complex process that can be triggered in different and largely understudied ways.

As a first essential step to solve this evolutionary puzzle, we need to know what are the woody species that have evolved from herbaceous relatives on continents (derived woody species) and islands (insular woody species), and what are the hotspot regions of derived woodiness. Therefore, the presenting author has recently compiled a global derived woodiness database in angiosperms based on published phylogenies, taxonomic revisions and flora treatments. The database comprises nearly 7000 derived woody species of which 1789 are island endemics. Most of these island endemics are insular woody in the strict sense, meaning that the wood development has occurred after arrival of the original (herbaceous) colonisers. The families that have contributed most to insular woodiness across archipelagos are Asteraceae, Gesneriaceae and Plantaginaceae. Interestingly, many spectacular examples of island radiations consist of insular woody lineages, such as Cyrtandra (245 sp), Veronica (125 sp) and Sonchus (64 sp). However, another species rich island lineage, the Hawaiian lobeliads (131 sp), has evolved its woodiness outside the archipelago (and is therefore not insular woody in the strict sense), and there are several examples of monotypic insular woody genera with narrow endemics. Likewise, we see much variation across islands-archipelagos in terms of number of insular species: Canary Islands are ranked number one (258 sp), followed by Hawaii (210 sp) and New Zealand (165 sp), while New Caledonia surprisingly harbours only a handful of insular woody species.

In conclusion, insular woodiness can be linked with diversification for many of the spectacular island radiations, but it may well be that insular woodiness could lead to an evolutionary dead-end scenario for other island lineages. Future diversification analyses based on in-depth molecular phylogenies of island lineages will shed more light into the relationship between insular woodiness and diversification.

Keywords: angiosperms, insular woodiness, diversification
The dark side of the island rule or how traits acquired on islands make endemic species more vulnerable to extinction

José María Fernández-Palacios * 1

1 Universidad de La Laguna (ULL) – S/C de Tenerife Spain, Spain

Islands contribute disproportionately for their area (5% of the emerged lands) to world biodiversity (25% are insular species), but even more disproportionately to the worldwide-endangered species lists (60%) or to the worldwide post-description extinctions (75%). The insular contribution to pre-description extinction is not yet quantified, although it is expected to be similar. But actually, which are the reasons behind this fact? Besides the genetic threats, such as inbreeding depression or loss of heterozygosity, unavoidable related to any founder event, the common demographic structure of insular species, i.e. few, genetically structured populations, largely confined to a single island (SIE = single island endemics), usually with a small number of individuals, add increasing vulnerability to the island biota. Furthermore, many of the characteristics that island species acquire through evolution in isolation -the so-called island rule or insular syndrome- yield to increased species vulnerability towards both natural -volcanic activity, gravitational landslips, tsunamis and cultural or anthropogenic related events. Such island-syndrome traits that make island species especially vulnerable, affect both insular animal (gigantism, dwarfism, flightlessness, tameness, diminution of clutch size, relaxation of defensive behavior, etc.) and plant species (loss of dispersibility, insular woodiness, loss of defense against herbivory, trend to sexual dimorphism, etc.). Human related impact on insular species, either direct habitat destruction, degradation or fragmentation, overexploitation, hunting, fishing, pollution, collecting introduction of alien species, including disease vectors and diseases, climate change or trophic cascades, have shifted the continental megafauna extinction towards an insular megafauna and megaflorea extinction, whose onset coincides with the human colonization of oceanic islands and micro-continents, what happened during the last 3 millennia and is still ongoing. The result is the demise of many insular charismatic species that have vanished forever.

Keywords: animals, extinction, island syndrome traits, oceanic islands, plants
Detecting trait-dependent diversification

Leonel Herrera-Alsina* 1, Elodie Wilwert 1, Martine Maan 1, Etienne S. Rampal † 1

1 University of Groningen (RUG) – Box 11103 9700 CC Groningen The Netherlands, Netherlands

Islands often host spectacular radiations. One explanation is that key innovations occur on islands that allow the exploration of new niche space. However, there are currently no methods available to test these ideas for islands with several independent colonizations. For global radiations such tests do exist. Here we present a new tool to analyze such global radiations and apply it to an island-like system, cichlids in Lake Tanganyika. The tool, called SecSSE (Several Examined and Concealed State-dependent Speciation and Extinction), requires phylogenetic data and trait data of the species at the tips; we have made it available as an R package. We ask whether depth-range generalists speciate at a different rate than depth-range specialists (shallow-water specialists or deep-water specialists), and whether depth range changes during speciation. We find that generalist species diversify much faster than specialists, but speciation does not involve change in depth range. Furthermore, shallow-water specialists seem to be a macro-evolutionary endpoint. We discuss the potential of this method to be used for multiple insular colonizations.

Keywords: phylogenies, diversification, SSE, model, macroevolution

*Corresponding author: leonelhalsina@gmail.com
†Speaker
Frugivory-related traits promote island radiations of tropical palms

1 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (iDiv) – Deutscher Platz 5e
04103 Leipzig, Germany
2 Royal Botanic Gardens, Kew (Kew) – Richmond, Surrey TW9 3AE, United Kingdom
3 IRD, DIADE, University Montpellier (IRD) – IRD, DIADE, University of Montpellier – Montpellier 34394, France
4 Department of Biological and Environmental Sciences, University of Gothenburg – Box 461, SE 405 30, G”oteborg, Sweden
5 Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University – Ny Munkegade 114, Aarhus C DK-8000, Denmark
6 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA) – PO Box 94248, Amsterdam 1090 GE, Netherlands

Animal-mediated seed dispersal by frugivorous birds, bats and mammals is central to the ecology and functioning of ecosystems on islands, but whether and how frugivory-related traits have affected plant speciation on islands remains little explored. Small-fruited plants (i.e. fruits < 4 cm) predominantly rely on seed dispersal by small-sized frugivores, such as birds, bats and small-bodied mammals. These small-sized frugivores show restricted dispersal with occasional long-distance dispersal, which may cause disrupted gene flow among plant populations and therefore increase the probability of genetic differentiation and allopatric speciation. Similarly, dispersal to isolated oceanic islands may facilitate speciation.

Using a global species-level phylogeny with comprehensive data on fruit sizes and plant species distributions in a comparative framework, we test whether fruit size and island distributions have affected speciation rates of palms (Areceae, ca. 2500 species), a plant family characteristic of tropical rainforests. Globally, the results reveal that palms with small fruit sizes have increased speciation rates compared with those with large (megafaunal) fruits. Interestingly, speciation rates of small-fruited palms are particularly high on oceanic islands in Southeast Asia, Australasia and the Pacific. These results suggest that small fruit sizes may have facilitated the colonisation of isolated islands by strong-flying, ocean-crossing frugivores (e.g. frugivorous hornbills, fruit pigeons and fruit bats), with subsequent speciation of small-fruited palm lineages. Thus, frugivory-related traits in combination with geography and the movement behaviour of frugivores can influence evolutionary radiations of fleshy-fruited plants.

Keywords: diversification, fruit size, frugivory, plant, animal interaction, speciation

*Speaker
†Corresponding author: onsteinre@gmail.com
The role of traits in non-adaptive diversification: some insights from a continental archipelago.

Anna Papadopoulou *† 1, Joaquín Ortego 2

1 Department of Biological Sciences, University of Cyprus (UCY) – 1 Panepistimiou avenue, 2109 Nicosia, Cyprus
2 Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC) – Av. Américo Vespucio 26 – 41092, Seville, Spain

The role of traits in diversification is primarily addressed within a macroevolutionary framework, where certain clade-specific traits are linked with increased diversification rates. Comparative phylogenetic tests can be very powerful for gaining an understanding of trait-dependent diversification patterns, but do not provide explicit links with the underlying microevolutionary processes. Comparative population genomic studies under an appropriate study design have the potential to bridge this gap, providing insights into the role of traits in driving divergence at the microevolutionary level. Here we use a comparative phylogeographic/population genomic approach to provide insights into the role of ecological traits in driving non-adaptive diversification of darkling beetles (Coleoptera: Tenebrionidae) across the Aegean archipelago. Previous results of the presenting author identified habitat preference as a key trait determining diversification of flightless darkling beetle lineages across the Aegean islands. Here we review the existing evidence, by re-analysing published and unpublished phylogenies of 15 darkling beetle genera. We delimit independently coalescing groups in each clade and estimate divergence times across the major geological barriers, which demonstrate that (a) stable-habitat specialist lineages are consistently deeply subdivided across the major geological barriers, (b) ephemeral-habitat specialists maintain species cohesion with shallow subdivision across the major geological barriers and (c) generalist lineages show intermediate levels of phylogeographic subdivision. We further examine more closely the microevolutionary processes at the early stages of diversification, by focusing on population divergence across an island group that has undergone cycles of fission-fusion during the Quaternary sea-level oscillations. We generate genome-wide SNP data (from ddRADseq) for five darkling beetle species sampled across nine present-day islands, which have been connected during low sea-level periods, and analyse them using coalescent-based demographic inference. The results show (a) deep divergence times and low levels of gene flow among populations of stable habitat specialists, (b) strong population bottlenecks in ephemeral-habitat specialists and (c) higher levels of gene flow among populations of habitat generalists. Our results highlight the importance of trait-mediated population persistence and gene flow in diversification and more generally the utility of combining micro- and macroevolutionary perspectives for a better understanding of the diversification process.

Keywords: Aegean, Coleoptera, comparative phylogeography, demographic inference, habitat preference

*Speaker
†Corresponding author: papadopoulou.g.anna@ucy.ac.cy
Dispersal ecology meets island evolution (Symp.)

Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>You move, I change: model-based approaches reveal striking differences between the evolution of plants and animals in the Canary Islands</td>
<td>Isabel Sanmartin [et al.]</td>
<td>289</td>
</tr>
<tr>
<td>Dispersal, niche and topoclimatic variation: speciation consequences for island invertebrates</td>
<td>Brent C. Emerson [et al.]</td>
<td>290</td>
</tr>
<tr>
<td>Defining geographical island isolation for terrestrial mammalian dispersal</td>
<td>Zachary Carter [et al.]</td>
<td>291</td>
</tr>
<tr>
<td>Tridactyle (Orchidaceae): a story of speciation and colonisation in São Tomé and Príncipe</td>
<td>Tania D’Haijère [et al.]</td>
<td>292</td>
</tr>
<tr>
<td>Combining species distribution models with dispersal kernels to predict range shifts in wind-dispersed organisms under changing climate conditions</td>
<td>Florian Zanatta [et al.]</td>
<td>293</td>
</tr>
</tbody>
</table>
You move, I change: model-based approaches reveal striking differences between the evolution of plants and animals in the Canary Islands

Isabel Sanmartin * 1, Javier Fuertes 1, Johan Nylander 2, Fredrik Ronquist 2

1 Real Jardín Botánico, CSIC (RJB-CSIC) – Plaza de Murillo, 2; 28014 Madrid, Spain
2 Department of Bioinformatics and Genetics, Swedish Museum of Natural History (NRM) – Box 50007, SE-104 05 Stockholm, Sweden

We assembled published molecular and phylogenetic data for a wide range of terrestrial animal and plant groups occurring in the Canaries to study similarities and differences in how their diversity on the islands originated. In total, we analysed 20 animal clades (383 taxa, 659 sequences) and 16 plant clades (449 taxa, 659 sequences). For each clade, we partitioned the molecular dataset by type of marker and applied different molecular rates. Clock and dispersal rates were also allowed to differ among clades. We used discrete-state continuous-time Markov chains to model how different lineages colonized the islands and subsequently moved between islands and habitats as they diversified. We used the phylogenetic graphical model framework introduced in RevBayes to modify the structure of the biogeographic rate matrix, such that we could tease apart different factors (area, geographic distance, age) influencing the relative carrying capacities and exchangeability rates. Inference was based on Bayesian Markov chain Monte Carlo analyses that integrated out uncertainty concerning phylogenetic relationships and all molecular and biogeographic model parameters. Our results show that inter-island dispersal rates and island carrying capacities (equilibrium number of lineages) do not correlate with geographic distance or island size. Carrying capacities in plants are lower for all islands but higher for the mainland compared to animals. Plant lineages move between islands faster than animal lineages, though inter-island dispersal patterns are similar. Plants shift between islands more readily than they shift between habitats, whereas the reverse is true for animals; when animals move between islands, they often shift to a new habitat. The proportion of the island’s carrying capacity that is not dependent on island area is larger in animals than in plants, suggesting a larger role for environmental heterogeneity. Conversely, dispersal rates, after partitioning out geographic distance, are higher in plants than in animals. We conclude that in the Canary Islands, animals have a tendency to diversify locally into different ecological habitats, but rarely colonize new islands. In contrast, plants move readily between islands but rarely shift habitat. This agrees with observed patterns at continental scale and points to interesting conclusions about community assembly on islands.

Keywords: Animals, Bayesian inference, Canary Islands, carrying capacities, dispersal rates, island biogeography, plants, phylogenetic graphical models, RevBayes

*Speaker
Dispersal, niche and topoclimatic variation: speciation consequences for island invertebrates

Brent C. Emerson *, Antonia Salces-Castellano 1, Víctor García-Oliveres 1, Jairo Patiño 2

1 Consejo Superior de Investigaciones Científicas [Spain] (CSIC) – Serrano 117, 28006 Madrid, Spain
2 Universidad de La Laguna [Tenerife - SP] (ULL) – S/C de Tenerife Spain, Spain

Understanding speciation as a process on islands, particularly speciation within individual islands, is key to explain the high levels of invertebrate speciation that characterise many oceanic islands and archipelagos. Radiations of invertebrate genera, whether presumed to be adaptive or non-adaptive, have been the subject of a rich history of molecular phylogenetic analysis, revealing both the geography and timing of speciation at the archipelago scale. However, there has been rather less focus on the process of speciation itself, particularly speciation within islands. A key focus of our research in recent years has been to investigate how spatial variation in climate within islands can catalyse speciation by disrupting gene flow. In this talk I will present results from two mutually informative studies led by our group. The first is a clade-level approach within a diversified weevil genus across the island of Gran Canaria. The second is a community-level approach at a much smaller spatial scale within the laurel forest of Tenerife. Results from both studies emphasise the interaction of topography and changes in climate throughout the Quaternary as a driver of speciation, mediated by species-specific dispersal and niche characteristics. By combining RAD-seq data with high resolution climate models, we show that when dispersal ability and ecological tolerances are restricted, microclimatic variation over distances of only a few kilometres can maintain strong geographic isolation and drive speciation.

Keywords: Quaternary, diversification, insect, arthropod, RAD, seq, population genetics
Defining geographical island isolation for terrestrial mammalian dispersal

Zachary Carter *† 1, James Russell 2, George Perry 2

1 The University of Auckland – 261 Morrin Rd, St Johns Auckland 1072 New Zealand, New Zealand
2 The University of Auckland – Private Bag 92019 Auckland 1142 New Zealand, New Zealand

Geographical isolation is often invoked to facilitate biogeographic enquiry. General practice of elucidating isolation through ad hoc species richness metrics may not properly inform such concepts, though. Here we addressed this problem by defining geographical insular isolation for dispersing terrestrial mammals, using a multivariate characterisation of contemporary and conventional metrics explaining species richness. This study was conducted on the 890 offshore islands (≥ 1 hectare) of the New Zealand archipelago (latitude: 34.1-47.3°S, longitude: 166.2-178.4°E). Principal components analysis (PCA) was used to reduce dimensionality of the island dataset, thereby creating composite variables (principal components, PCs) characterising the primary drivers of insular isolation. An amalgamation of 16 variables were considered, including: Euclidean-based distance measurements, stepping-stone sequences, landscape measures of isolation, graph-theoretic metrics, and island area. For each island, relevant variables were quantified in a context-specific manner matching the life-history of specific dispersing species. Distance from the mainland (PC1 Distance) and the number of stepping stones utilised en route (PC2 Stepping Stones) comprised 72.2% dataset variance. PC1 Distance explained over half of New Zealand’s isolation alone, and multiple variables had high factor loading scores. Focal island area (PC3 Area) was only marginally important, comprising 7.3% dataset variance. Based on dataset variance, PC1 Distance and PC2 Stepping Stones suitably characterised insular isolation for New Zealand, reaffirmed through parallel analysis and Kaiser’s criterion. Moreover, a simple Euclidean distance measurement is likely sufficient when quantifying PC1 because it describes distance from the mainland equally well as other methods, including graph-theoretic least-cost and circuit theory methods, in a much simpler manner. This depiction can be used to facilitate subsequent biogeographic enquiries characterising isolation because the demonstrated metrics were substantiated.

Keywords: geographical isolation, offshore islands, principal components analysis, mammal dispersal, New Zealand

*Speaker
†Corresponding author: zach.carter@auckland.ac.nz
Tridactyle (Orchidaceae): a story of speciation and colonisation in São Tomé and Príncipe.

Tania D’Haijère *, Patrick Mardulyn 1, Esra Kaymak 1, Olivier Hardy 1, Tariq Stévart 4.3.2

1 Université Libre de Bruxelles (ULB) – Avenue Franklin Roosevelt 50 - 1050 Bruxelles, Belgium
4 Herbarium of the Université Libre de Bruxelles (BRLU) – Campus du Solboch Bat. B, CP 169, 50 Av. F.D. Roosevelt 1050 Brussels., Belgium
3 National Botanic Garden of Belgium (BR) – Domein van Bouchout, Nieuwelaan 38, B-1860, Meise, Belgium, Belgium
2 Missouri Botanical Garden (USA) (MBG) – 4344 Shaw Boulevard in St. Louis, Missouri, USA, United States

Despite many zoological biogeographic studies on the islands of the Gulf of Guinea, the mechanisms of diversification are still poorly understood, and almost no studies have been conducted on the origin of the flora. Here, we used the genus Tridactyle (Orchidaceae) (50 spp.) as a model to understand the story of colonization of epiphytic orchids. This genus is only found in continental Africa and São Tomé and Príncipe, and has a very high rate of endemicity on these islands. Resolving phylogenetic relationships allowed to investigate how species diversity has evolved on this archipelago, and more precisely, we tested three main colonisation scenarios that could explain the diversity of Tridactyle: i) a scenario of colonisation without speciation, ii) adaptative radiation and iii) a simultaneous colonisation by taxonomically and/or ecologically linked organisms. In this study, we used one nuclear maker PhyC (c. 900 pb), the sequencing of plastome (pDNA: c. 160,000 bp), ribosomal DNA (rDNA: c. 5900 bp), and habitat characteristics for each species (41 species), which provided: (i) a phylogenetic relationships tree between species and estimated the divergence period between the main lineages, and (ii) reconstructed ancestral states regarding biome preferences. Preliminary results suggested than the adaptative radiation was the most probable scenario, with one species, Tridactyle tridactylites, colonizing both islands and differentiated with elevation and habitats.

Keywords: São Tomé and Príncipe, Gulf of Guinea, Tridactyle, Orchidaceae, radiation, ecological differentiation.
Combining species distribution models with dispersal kernels to predict range shifts in wind-dispersed organisms under changing climate conditions

Florian Zanatta 1, Robin Engler 2, Flavien Collart 1, Olivier Broenimann 3, Jesús Muñoz 4, Rubén Mateo 5, Antoine Guisan 3, Alain Vanderpoorten * 1

1 University of Liège – B22 Sart Tilman 4000 Liège, Belgium
2 Swiss Institute of Bioinformatics – Quartier Sorge, Bâtiment Amphipole, 1015 Lausanne, Switzerland
3 Spatial Ecology Group, Department of Ecology and Evolution, University of Lausanne – Biophile 1015 Lausanne, Switzerland
4 Real Jardín Botánico de Madrid – Plaza de Murillo, 2, 28014 Madrid, Spain
5 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid – 28049 Madrid, Spain

Species distribution models have been the most widely used tool to assess the impact of climate change on biodiversity patterns. One of the main assumptions of these models is that species are at equilibrium with their environment, as if they had no dispersal limitations. We test this hypothesis in spore-producing plants, wherein experimental evidence suggests that efficient short-distance dispersal coupled with random long-distance dispersal leads to an inverse isolation effect. Under the latter, a higher genetic diversity of colonizing propagules is expected with increasing isolation, counteracting differentiation beyond the range of short-distance dispersal. We employ spatial genetic structure analyses to show that the inverse isolation effect is not a rule in spore dispersal and that geographic distance remains a significant proxy of spore colonization rates, even in organisms with efficient dispersal capacities. We therefore present an integrative model to make predictions of range shifts in wind-dispersed organisms under changing environmental conditions, taking the spatial variation of species dispersal capacities into account. We combined species intrinsic biomechanical features (i.e., the settling velocity of diaspores and their release height) and environmental variables (i.e., canopy height, wind intensity and turbulence) into a mechanistic analytical long-distance dispersal model. We then implemented this dispersal model using a new version of MigClim’s cellular automaton that allows migration simulations of species across the landscape under competing environmental change scenarios. The new version of MigClim was adapted for wind dispersal by implementing spatially-explicit dispersal kernels taking variation in wind conditions and canopy structure across the landscape into account. We show an example of application of this method to predict how climate changes will impact future distribution ranges in bryophytes, which are particularly sensitive to climatic variations due to their poikilohydric condition.

Keywords: dispersal ecology, dispersal kernel, climate change, spores

*Speaker
Seabirds on Islands (Symp.)

Contents

Seabird on islands: general overview and a case study, Matthieu Le Corre [et al.] ... 295
Consequences of multi-species introductions on island ecosystems, James Russell [et al.] 296
Seabirds on islands: unraveling drivers of spatial distribution for breeding seabird populations on New-Caledonia islets, Tristan Berr [et al.] 297
Behavioural ecology and impact of feral and domestic cats at a coastal seabird colony of Reunion Island: implications for conservation, Arthur Choeur [et al.] 298
Seabird recovery following rat and cat eradication in Seychelles: achievements and challenges., Gerard Rocamora 299
Initial seabird response to an on-going rat eradication project on Lehua islet, Hawaii (USA), Andre Raine [et al.] 300
Seabird on islands: general overview and a case study

Matthieu Le Corre *, Jean Hivert 2, Sabine Orlowski 3, Gabrielle Dicque 1,2, Morgane Manoury 1, Maud Berlincourt 1, Merlène Saunier 1, Florent Bignon 3, David Ringler 3

1 Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) – Centre National de la Recherche Scientifique : UMR9220, Université de la Réunion, Institut de Recherche pour le Développement – UNIVERSITE DE LA REUNIONFaculté des Sciences et Technolo15 Avenue René CasinBP 9200397744 ST DENIS CEDEX 9, France
2 Conservatoire Botanique National de Mascarin (CBNM) – Les Colimaçons - Saint Leu -Réunion, Réunion
3 Terres Australes et Antarctiques Françaises (TAAF) – Saint Pierre - La Réunion, Réunion

We first make a review of what is known on the impacts of seabirds on islands (on soil, vegetation, invertebrates,...) and on adjacent marine habitats. We will then show how biological invasions (especially by introduced mammals like rats or cats), by reducing the number of breeding seabirds, can have cascading effects on an entire ecosystem. We present some clear evidence that island restoration projects consisting of eradicating introduced mammals not only benefit to seabirds but also to other seabird-driven interactions and components. In a second part we present the ecological changes (including native biodiversity recovery) observed on Tromelin Island 13 years after rat eradication. The study concerns seabird and vegetation monitoring as well as the study of the ecology and impact of mice (another introduced mammal, that we failed to eradicate). Overall, the seabird community changed drastically in terms of number of breeding species (from 2 species at the time of rat eradication in 2005 to 6 species in 2018) and in terms of bird numbers (from less than 300 breeding pairs to more than 3000 breeding pairs). Meanwhile, the vegetation changed in term of plant abundance, coverage and diversity. Other major factors like soil structure, climate and marine influences very clearly shaped the organization of the vegetation. Mice were very abundant and fed mostly on plants and insects. Recent observations suggest however that some mice may have changed their foraging behavior by attacking chicks of masked boobies. Based on these findings we built a conceptual model showing the interactions and retroactions between the various components of this naturally simplified island ecosystem (marine habitats, soil, climate, vegetation, introduced mammals and seabirds) and made some recommendations in terms of island restoration and management.

Keywords: island ecosystem dynamics, biological invasions, ecological restoration, plant – animal interactions
Consequences of multi-species introductions on island ecosystems

James Russell 1, Christopher N. Kaiser-Bunbury * 2

1 University of Auckland – Private Bag 92019, Auckland, 1142, New Zealand
2 University of Exeter – Cornwall Campus, Penryn, TR10 9FE, United Kingdom

Multiple interacting introduced species are now the norm on islands across the planet, but the consequences of this for native species and ecological communities can only be properly understood if the mode of ecosystem regulation is taken into account. In contrast to continents where predation-controlled top-down trophic regulation is the norm, islands are predominantly resource-limited bottom-up trophic regulated ecosystems, reliant on temporally-varying, externally-driven nutrient inputs. The outcome of interactions among introduced species on their population dynamics will depend on their relative trophic position, ultimately determining whether their combined impacts on native species are additive, multiplicative or suppressive of one another. Changes at different scales in community structure that occur following multiple introductions, and their effect on function, can be investigated from analysis of ecological networks. Understanding how both species population dynamics and community structure change following multiple species introductions to bottom-up regulated ecosystems will better inform appropriate conservation management strategies on islands. This will be particularly important when predicting the consequences of invasive species eradication, where an ordered ecological disassembly that minimises adverse effects in the wider community is to be preferred. Restoration targets can then be set that focus on removing or minimising the impact of keystone introduced species and re-establishing bottom-up trophic regulation dominance on islands. Although a robust understanding of the consequences of multiple species introductions to ecosystems requires extensive data, islands provide an opportunity where resolvable networks and consistent patterns in species introductions and interactions can facilitate predictability.

Keywords: conservation, eradication, interaction, invasive, restoration, trophic
Seabirds on islands: unraveling drivers of spatial distribution for breeding seabird populations on New-Caledonia islets

Tristan Berr †, Karen Bourgeois, Hélène De Méringo, Julien Baudat-Franceschi, Eric Vidal

2 Ecole Normale Supérieure de Lyon (ENSL) – Université de Lyon, ENS de Lyon – 15 Parvis René Descartes, France
1 Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) – Université d’Avignon et des Pays de Vaucluse : UMR7263, Aix Marseille Université : UMR7263, Institut de recherche pour le développement [IRD] : UMR237 : UMR7263, Centre National de la Recherche Scientifique : UMR7263 – Centre IRD de Nouméa - BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie, France
3 Société Calédonienne d’Ornithologie (SCO) – Nouméa, New Caledonia

New Caledonia is a ”French” archipelago in the Western Pacific comprising dozens of islands and > 600 islets and is home to at least 23 breeding seabird species. The New Caledonian EEZ also contains the fourth largest Marine Protected Area, the Natural Park of the Coral Sea (1,292,967 km²), which encompass several remote islet groups such as d’Entrecasteaux reefs and the Chesterfield archipelago. Despite long-term efforts in ornithological monitoring and several eradication campaigns targeting invasive mammals, drivers of breeding seabird communities and population abundance are yet poorly known. We aggregated data from 105 ornithological surveys (1958-2019) on 92 islets spread across New Caledonian waters to produce a local assessment of the community distribution of nesting seabirds. We then tested the effects of anthropogenic (invasive species, harbor distance, visitation) and non-anthropogenic (habitat characteristics) drivers on site-wise abundance and species richness. Finally, we used our results to evaluate the impact of past eradication campaigns on seabird distribution, discuss the relevance of extant conservation measures and identify sites that should be prioritized for future research and management. Overall, we found species richness and bird abundance to be strongly correlated with the distance to nearest harbor, with the most remote islets concentrating the largest and most diverse colonies. We also observed significant interspecific variation of breeding ranges (distance from harbor at which breeding occurs), that may account for differences regarding the tolerance to human presence and visitation. Our analyses were partly limited by data heterogeneity due to uneven islet coverage and the variety of survey methods used, and thus did not include temporal trends. To the best of our knowledge, this is the first attempt to identify drivers of breeding seabird distribution on islets covering most of the New Caledonian waters. Our findings highlight the importance of near-pristine sites for seabird breeding and emphasize the need for more comprehensive, fine-tuned conservation policies for maintaining breeding populations. Future developments include the addition of more study sites (Loyalty islands, Remote Eastern islands) and large-scale comparisons with other important seabird breeding locations in the Indo-Pacific area.

Keywords: island ecology, New Caledonia, seabirds, spatial distribution, conservation

Speaker
Corresponding author: tristan.berr@ens-lyon.fr
Behavioural ecology and impact of feral and domestic cats at a coastal seabird colony of Reunion Island: implications for conservation

Arthur Choeur *† 1, Lucie Faulquier 1, Sabine Orlowski 1, Julien Dijoux 1, Gaël Potin 1, Sophie Bureau 1, Matthieu Le Corre 1

1 Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) – Centre National de la Recherche Scientifique : UMR9220, Université de la Réunion, Institut de Recherche pour le Développement – UNIVERSITE DE LA REUNIONFaculté des Sciences et Technolo15 Avenue René CasinBP 9200397744 ST DENIS CEDEX 9, France

Cats are opportunistic predators responsible of the collapse of many animal populations on islands. Seabirds are particularly vulnerable because of their lack of any anti-predator behaviour. The site of Grande Anse (South of Reunion Island) holds the main breeding colony of wedge-tailed shearwaters (Ardenna pacifica) of the island and a colony of white-tailed tropicbirds (Phaethon lepturus). It is a touristic area with takeaways and restaurants surrounded by habitations. The area is frequented by both domestic cats and feral cats. Our goal was to investigate the behaviour of domestic and feral cats and their respective impacts on seabirds. We used four complementary methods: fine-scale tracking of cat foraging movements with GPS collars, automated observation of seabird nests with camera traps, cat scat analysis and the wedge-tailed shearwater’s breeding success. The results show that domestic cats have small home ranges and do not forage at seabird colonies. Feral cats on the other hand have wider home range and frequently forage at seabird colonies. Cat tracking also revealed that feral cats very frequently foraged at the takeaways and restaurants, taking advantage of food garbage. The same cats alternatively forage at food garbage and at seabird colonies. Camera trap surveys showed that feral cats were very abundant at seabird colonies and some were seen attacking shearwaters. The breeding success of wedge-tailed shearwaters was low (39%). Scats analysis revealed that cats fed mainly on food garbage, rats, insects and occasionally seabirds. These results were confirmed by the finding of several dead shearwaters at the colony, most of them probably killed by cats. Our results show that domestic cats do not have a direct impact on seabirds. Feral cats on the other hand threatened coastal seabirds. Furthermore, takeaways and restaurants represent an abundant and predictable source of food for feral cats and contribute to the high density of cats at seabird colonies. We propose adapted management guidelines for seabird conservation in this context: a better management of waste at restaurants and takeaways, a permanent control of feral cats and a sterilization campaign of domestic cats to avoid these cats to reinforce feral cat population by breeding.

Keywords: seabirds, tracking GPS, cats, biological invasion, management plan

*Speaker
†Corresponding author: arthur.choeur@univ-reunion.fr
Seabird recovery following rat and cat eradication in Seychelles: achievements and challenges.

Gerard Rocamora *† 1

1 University of Seychelles, Island Biodiversity and Conservation centre (UniSey IBC) – Anse Royale campus; Box 1348, Victoria, Seychelles, Seychelles

The impact of rat and cat eradication on ecosystems is poorly documented, especially in the tropics. In Seychelles, between 1996 and 2010, invasive rats and (in most cases) cats were eradicated from ten islands (five granitic and five coralline), of 21 to 219 ha. Monitoring comprised formal protocols combined with empirical wildlife observations. To date, benefits have been documented for a minimum of 23 seabird populations of nine different species, i.e. 12 (re)colonisations and 11 population increases. Increases in population size or range have been recorded in almost all islands where rats (and cats) were removed. First positive impacts were noted within one to ten years after the eradications, in some islands more substantially than others depending on the proximity of source populations and other unknown factors. Almost all seabird populations already present increased in numbers, and six species established or re-established a total of ten new breeding populations across seven islands. Seabirds appear to play an important role in the ecosystem recovery process, by inducing vegetation changes and bringing in nutrients. Vegetation changes that followed rat eradication such as the rapid development of native Pisonia grandis trees further contributed to the establishment of new species or the increase of existing ones. Apart from seabirds, many other native vertebrates (landbirds, reptiles) and several large invertebrates (snails, millipedes, crabs) have also benefited from these operations, further contributing to the restoration process of these islands. Documenting ecosystem recovery should be given higher priority in future. Overall, rat and cat eradication consistently benefited seabird populations and island ecosystems in all cases. However, biosecurity is the keystone for long-lasting conservation impacts of such island restoration programs and crucially needs to become part of islanders’ culture. Lack of surveillance and poor biosecurity can have dramatic consequences. The recent reinvasion of Conception Island by rats, the subsequent loss of one third of the global population of a threatened endemic passerine (Seychelles White-eye Zosterops modestus) and the decline of the recently established shearwater colony reveals how ecosystem recovery can be quickly reversed, and how vulnerable seabirds and other wildlife, which depend on predator-free island sanctuaries, are.

Keywords: cat eradication, ecosystem recovery, island restoration, rat eradication, seabird recovery

*Speaker
†Corresponding author: sounds@seychelles.net
Initial seabird response to an on-going rat eradication project on Lehua islet, Hawaii (USA)

Andre Raine *† 1, Eric Vanderwerf 2, Joshua Atwood 3, Patrick Chee 3, Clay Chow 3, Patty Baiao 4, Mele Khalsa 4, Gregg Howald 4, Shane Siers 5, Sheri Mann 3

1 Kauai Endangered Seabird Recovery Project (KESRP) – PO Box 81, Hanapepe 96716, Kauai, United States
2 Pacific Rim Conservation – PO Box 61827 Honolulu, Hawaii 96839, United States
3 Division of Forestry and Wildlife (DOFAW) – 1151 Punchbowl St 325, Honolulu, HI 96813, United States
4 Island Conservation (IC) – 2100 Delaware Ave., Suite 1 Santa Cruz, CA 95060, United States
5 Animal and Plant Health Inspection Service (APHIS) – 4700 River Road Riverdale, MD 20737, United States

Lehua Islet is a Bird Sanctuary situated 19 miles off the coast of Kauai. Considered the most important seabird islet in the main Hawaiian Islands, Lehua has nine confirmed breeding seabird species including the only U.S. breeding population of Black-footed Albatross Phoebastria nigripes outside of the north-western Hawaiian Islands and a breeding population of the endangered Band-rumped Storm-petrel Oceanodroma castro. However, seabirds on the islet have been heavily impacted by the introduced Polynesian Rat Rattus exulans, which have also prevented native plant restoration efforts. In 2017 an ambitious multi-partner project was initiated to eradicate rats off Lehua, using aerial drops of the anticoagulant rodenticide Diphacinone. To assess the impact of this island restoration effort, we present data on rat prevalence and seabird response by the end of 2018 using multiple techniques including burrow cameras, seabird plots, burrow monitoring and acoustic recording devices. Remote cameras indicate that a small number of rats are still present indicating that total eradication may not have been achieved. Despite this, the rat population has been dramatically suppressed and seabird response to this is considered in terms of estimated population sizes, reproductive success rates and breeding distribution for multiple species. In particular, the smaller seabird species appear to have benefited the most from the eradication effort, with the number of breeding Bulwer’s Petrel Bulweria bulwerii burrows and their respective reproductive success being significantly higher in 2018 than previously. With these results in mind, we discuss possible directions for the Lehua Islet Restoration Project in 2019 and beyond.

Keywords: rats, eradication, Hawaii, seabird, restoration

*Speaker
†Corresponding author: araine6@hawaii.edu
Author Index

Ô Marcaigh, Fionn, 262
Abdelkrim, Jawad, 174
Abe, Harue, 216
Aboubacar, Said Anli, 131
Adjouhgniope, Rachelle, 175
Adriaens, Tim, 151
Agricole, Julio, 205
Aguiar, Carlos, 113
Ah-Peng, Claudine, 100, 101, 166, 168
Al-Mourabit, Ali, 39
Alaminos, Esmeralda, 176
Albert, Sébastien, 211
Alexandre, Alexandre, 184
Alexandre, Cyprien, 36
Algar, Adam, 37, 93, 102
Ali, Jason, 240
Allagholi, Ahmad, 206
Alvarez-Filip, Lorenzo, 146
Amaral-Zettler, Linda, 273
Amorim, Isabel R., 94
Amy, Elise, 56
Andújar, Carmelo, 72
Ando, Haruko, 218
Andrefouet, Serge, 44
Andriamainty, Fils Bienvenu, 131
Andriamamonjy, Aldus, 159
Andrianaivoarivelo, Radosoa, 159
Antoine, Pierre-Olivier, 138
Antonelli, Alexandre, 119
Antonio, Abreu, 51
Appoo, Jennifer, 109, 195, 205
Ariffin, Umilaela, 27
Arnedo, Miquel, 94
Arribas, Paula, 72
Ashton, Louise A., 98
Aswan, Aswan, 137
Atwood, Joshua, 300
Aurelle, Didier, 199
Azevedo, José, 187, 188
Bach, Wilhelmine, 236
Baidor, Patty, 300
Bailer, Claudia, 202, 213
Baker, William J., 286
Bao, Roberto, 273
Barajas Barbosa, Martha Paola, 102
Barbaro, Luc, 20
Barner, Allison, 29
Baron, Juliette, 174
Barrabé, Laure, 121, 265
Barrios, Sara, 74
Barthe, Christelle, 169
Baszile, Jordan, 60
Baudat-Franceschi, Julien, 297
Baudraz, Maude EA, 262
Bauer, Aaron, 243
Baxter, Richard, 158, 206
Bazire, Romain, 197
Beierkuhnlein, Carl, 102, 117, 256
Beilman, David, 167
Bellingham, Peter, 218
Bello-Rodríguez, Victor, 114
Bely, Marine, 197
Benavente-Marín, Mario, 273
Benayahu, Yehuda, 50
Benedicto, Jose, 128
Bennett, Shannon, 124
Bento Elias, Rui, 191
Berlincourt, Maud, 295
Bernard, Serge, 38
Bernardi, Giacomo, 142
Berr, Tristan, 297
Bialecki, Anne, 39
Bibi, Jastin, 131
Bidlick, Matt, 264
Bignon, Florent, 295
Bignon, Jérôme, 39
Bigot, Lionel, 44, 46
Birnbaum, Philippe, 81, 104, 121, 185, 247
Bissessur, Prishnee, 213
Blackburn, Tim, 86, 119
Blaine, Bonnie, 122
Blanchard, Grégoire, 247
blanchard, grégoire, 104
Bodey, Thomas, 190
Bodin, Aymeric, 153
Boeiro, Mario, 94
Boettinger, Carl, 234
Boissin, Emilie, 44
Boland, John, 90
Bonhommeau, Sylvain, 38
Bonnardot, François, 171
Bonnaud, Elsa, 175
Booher, Douglas, 122
Borges Silva, L., 75
Borges, Paulo A.V., 94, 154, 270
Borsa, Philippe, 49
Boulanger, Pierre, 197
Boullet, Vincent, 25
Bourgeois, Karen, 297
Bourget, Edouard, 175
Bourmaud, Chloé, 44
Bouvet, Jean-Marc, 255
Bouvy, Marc, 44
Bouwman, Hindrik, 41
Boyd, Doreen, 37
Boyer, Bernard, 39
Bracco, Isabelle, 56
Brescia, Fabrice, 180
Brockerhoff, Eckehard, 20
Broenimann, Olivier, 293
Brown, Tom, 37
Brui, David, 81, 265
Buckley, Yvonne M., 262
Bunbury, Nancy, 109, 127, 193, 195, 205, 212
Bureau, Sophie, 298
Burke, Terry, 186
Burns, Kevin, 62
Burt, April, 42, 193
Cabrera-Pérez, Miguel Ángel, 177
Cacabelos, Eva, 188
Cadotte, Marc, 103
Campbell, David, 157
Campbell, Patrick D., 280
Campos, Pierre-Eric, 39
Cardinale, Eric, 131
Cardoso, Pedro, 94
Carey, Mark, 90
Carlo, Tomás, 218
Carpenter, Jo, 221
Carter, Zachary, 291
Carvalho, Jose, 94
Carvalho, Rui, 94
Cassan, Jean-Jérôme, 247
Castelin, Magalie, 199
Catarino, Luís, 270
Catry, Thibault, 35, 36
Caujape-Castells, Juli, 64, 79, 83, 149, 276
Caumes, Christophe, 60
Centon, J-F, 58
Ceríaco, Luis, 239, 270
Ceroni, Constanza, 252
Chabanet, Pascale, 44, 46, 189
Chambers, Timothy, 78
Chambrin, Lise, 153
Chase, Jonathan, 228
Chatelain, Cyrille, 232
Chau, Marian M., 78, 80
Chauzat, Marie-Pierre, 181
Chave, Jérôme, 106
Chee, Patrick, 300
Cheng, Wenda, 98
Cheptou, Pierre-Olivier, 263
Chiariucci, Alessandro, 256
Chiego, François, 131
Chin, Jay, 269
Cho, Arthur, 298
Choong Kwet Yive, Nee Sun, 41
Chow, Clay, 300
Clémencet, Johanna, 123
Claudia, Ribeiro, 51
Claverie, Thomas, 40, 52
Clegg, Sonya, 30, 260
Clerec, Patricia, 39
Clubbe, Colin, 74
Clucas, Gemma, 195
Coelho, Márcia C.M., 101
Cole, Andrew, 201
Cole, Nik, 41
Collart, Flavien, 293
Colomb, Aurélie, 169
Combes, Marie-Christine, 28
Commagnac, Loïc, 25
Convey, Peter, 251
Cook, Elizabeth, 151
Cook, Lorraine, 193
Costa, Ana C., 273
Costa, Filipe O., 249
Costa, Luis, 128
Coulson, Tim, 260
Couture, Emmanuel, 185
Coutures, Emmanuel, 185
Couvré, Thomas L.P., 286
Couzi, François-Xavier, 198
Crampton, Lisa, 57
Craven, Dylan, 228, 235, 236
Crawford, D. J., 75
Crespo, Luis, 94
Criado, Constantino, 276
Crochetet, Estelle, 44, 189
Csergő, Anna M., 262
Cuénin, Nicolas, 115, 203
Cubas, Jonay, 114
Curto, Manuel, 31, 32, 64
Cutts, Vanessa, 93, 102
Cybele, Cathleen, 132

D’Haijère, Tania, 292
Da Rochas, Nicolas, 199
Dane Sanchez, Michele, 74
Dargent, Fleur, 129
Davidar, Priya, 194
Dawson, Michael, 145
Dawson, Wayne, 151, 232, 236
Day, Julia, 261
de Boer, Erik J., 273, 275
de la Cruz, Azucena, 128
de Lima, Ricardo F., 270
De Méringo, Héléne, 175, 297
de Nascimento, Lea, 270, 275, 276
Deák, Bálint, 257, 258
Debar, Léo, 175
Deconchat, Marc, 20
Degauch graphite, Laurent, 169
del Arco, Marcelino, 114
Delatte, Héléne, 123, 181
DeLay, John, 167
Delhate, César, 152
Delord, Karine, 197
Dianzunga, Niry T., 99
Dicque, Gabrielle, 295
Dijoux, Julien, 298
Ding, Ping, 103
Dinis, Herculano Andrade, 82
Doisy, Anna, 168
Donihue, Colin, 242
Dos Santos, André, 22
Downey-Breedt, Nicola, 50
Drake, Donald, 218, 221
Drew, Bryan, 121
Duarte, Maria Cristina, 83
Dubos, Jerome, 60, 198
Duchemann, E, 58
Dufay, Valère, 36
Duflot, Valentin, 169
Dufossé, Laurent, 39
Dugdale, Hannah, 186
Durocher, Marine, 278
Durville, Patrick, 44, 46
Echevarria, Guillaume, 18
Econo, Evan, 122
Eibes, Pia, 256
Eisenbacher, Judith, 256
Elias, Rui, 270

Emerson C., Brent, 290
Emerson, Brent C., 72, 94
Engler, Robin, 293
Erskine, Peter, 18
Esnault, Olivier, 181
Essl, Franz, 182, 232, 236
Etienne S., Rampal, 139
Evin, Allowen, 278

Fabre, Anne-Claire, 242
Falcón, Wilfredo, 212
Faria, João, 188
Faulquier, Lucie, 298
Faurby, Søren, 119, 184, 286
Fayet, Annette, 195
Fenouillas, Pauline, 56
Feriche, Mónica, 176
Fernández-Palacios, José María, 102, 270, 275, 276, 284
Fernandes, Inês, 83
Fernando, Espino, 51
Fernando, Tuya, 51
Ferreira, Carlos Eduardo, 147
Ferreira, Maria Teresa, 191
Field, Richard, 93, 102, 256
Figenschou, Laura, 168
Fischer, Fabian, 106
Fischer, Georg, 122
Fischer, Jan Christopher, 172
Fisher, Brian, 122
Fleischer-Dogley, Frauke, 109, 127, 193, 205
Fletcher, Michael Shawn, 269
Floeter, Sergio, 141
Florens, Vincent, 108, 202, 213
Flores, Olivier, 100, 115, 169, 172, 203, 211, 255
Fogliani, Bruno, 18, 77
Fokialakis, Nikolas, 39
Foufopoulos, Johannes, 242
Fouillaud, Mireille, 39
Fouillot, D, 58
Frago, Enric, 99
Franc, Charlène, 211
Francisco, Otero Ferrer, 51
Fricke, Evan, 208
Friedman, Nicholas, 122
Fritz, Uwe, 280
Frohlich, Danielle, 151
Fuertes, Javier, 289

Gérard, Karin, 252
Gâteblé, Gildas, 77, 81, 121
Gabriel, Rosalina, 94, 101, 270
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopez, Jade</td>
<td>198</td>
</tr>
<tr>
<td>Lopez, Zambran</td>
<td>252</td>
</tr>
<tr>
<td>Lopez-Darias, Marta</td>
<td>154</td>
</tr>
<tr>
<td>Lorca, Xavier</td>
<td>185</td>
</tr>
<tr>
<td>Losen, Barbara</td>
<td>130</td>
</tr>
<tr>
<td>Losos, Jonathan</td>
<td>241</td>
</tr>
<tr>
<td>Loupe, Vivien</td>
<td>174</td>
</tr>
<tr>
<td>Louys, Julien</td>
<td>137</td>
</tr>
<tr>
<td>Lyras, George</td>
<td>135</td>
</tr>
<tr>
<td>Mélanie, Jimmy</td>
<td>131</td>
</tr>
<tr>
<td>Maan, Martine</td>
<td>285</td>
</tr>
<tr>
<td>Macieira, Raphael</td>
<td>142</td>
</tr>
<tr>
<td>Madruga, Luisa</td>
<td>187</td>
</tr>
<tr>
<td>Magalon, Hélène</td>
<td>44</td>
</tr>
<tr>
<td>Maillot, Solenne</td>
<td>153</td>
</tr>
<tr>
<td>Mairal, Mario</td>
<td>66</td>
</tr>
<tr>
<td>Maldonado, Anthony</td>
<td>76</td>
</tr>
<tr>
<td>Malumbres-Olarte, Jagoba</td>
<td>94</td>
</tr>
<tr>
<td>Malumphy, Chris</td>
<td>151</td>
</tr>
<tr>
<td>Mamos, Tomasz</td>
<td>249</td>
</tr>
<tr>
<td>Mann, Sheri</td>
<td>55, 300</td>
</tr>
<tr>
<td>Manoury, Morgane</td>
<td>295</td>
</tr>
<tr>
<td>Maréchal, Isabelle</td>
<td>106</td>
</tr>
<tr>
<td>Marcial, Cosme de Esteban</td>
<td>51</td>
</tr>
<tr>
<td>Mardulyn, Patrick</td>
<td>292</td>
</tr>
<tr>
<td>Marfleet, Katei</td>
<td>80</td>
</tr>
<tr>
<td>Mariani, Michela</td>
<td>269</td>
</tr>
<tr>
<td>Marquesque, Sophie</td>
<td>153</td>
</tr>
<tr>
<td>Marline, Lovanomenjanahary</td>
<td>100</td>
</tr>
<tr>
<td>Marques, Adalzira</td>
<td>82</td>
</tr>
<tr>
<td>Marques, Helena</td>
<td>273</td>
</tr>
<tr>
<td>Marshall, Charles</td>
<td>120</td>
</tr>
<tr>
<td>Martín-Esquível, José Luís</td>
<td>114</td>
</tr>
<tr>
<td>Marteau, Cédric</td>
<td>153</td>
</tr>
<tr>
<td>Martel-Asselin, Francois</td>
<td>35</td>
</tr>
<tr>
<td>Martinez, Carole</td>
<td>189</td>
</tr>
<tr>
<td>Martinez, J</td>
<td>58</td>
</tr>
<tr>
<td>Martinou, Kelly</td>
<td>151</td>
</tr>
<tr>
<td>Martins, Gustavo M.</td>
<td>188</td>
</tr>
<tr>
<td>Martos, Florent</td>
<td>115</td>
</tr>
<tr>
<td>Mata, Vanessa A.</td>
<td>113</td>
</tr>
<tr>
<td>Mateo, Rubén</td>
<td>293</td>
</tr>
<tr>
<td>Mathivet, Mathieu</td>
<td>175</td>
</tr>
<tr>
<td>Matias, Miguel</td>
<td>273</td>
</tr>
<tr>
<td>Matos, Margarida</td>
<td>270</td>
</tr>
<tr>
<td>Matthews, Tom</td>
<td>46, 92</td>
</tr>
<tr>
<td>Mavingui, Patrick</td>
<td>22</td>
</tr>
<tr>
<td>Mbogha, James</td>
<td>146</td>
</tr>
<tr>
<td>McConkey, Kim</td>
<td>218, 221</td>
</tr>
<tr>
<td>McDonald, Robbie</td>
<td>190</td>
</tr>
<tr>
<td>McKown, Matthew</td>
<td>59</td>
</tr>
<tr>
<td>Measey, John</td>
<td>179</td>
</tr>
<tr>
<td>Medeiros, Cristina</td>
<td>154</td>
</tr>
<tr>
<td>Meenowa, Deodass</td>
<td>131</td>
</tr>
<tr>
<td>Meirmberg, Harald</td>
<td>31, 32, 64</td>
</tr>
<tr>
<td>Meiri, Shai</td>
<td>240</td>
</tr>
<tr>
<td>Menezes de Sequeira, Miguel</td>
<td>83, 270</td>
</tr>
<tr>
<td>Meyer, Jean-Yves</td>
<td>152, 166</td>
</tr>
<tr>
<td>Meyer, Shankar</td>
<td>77, 81</td>
</tr>
<tr>
<td>Mikheyev, Alexander</td>
<td>122</td>
</tr>
<tr>
<td>Milá, Borja</td>
<td>118</td>
</tr>
<tr>
<td>Mildenstein, Tammy</td>
<td>208</td>
</tr>
<tr>
<td>Minnaar, Karin</td>
<td>41</td>
</tr>
<tr>
<td>Miura, Hiroki</td>
<td>216</td>
</tr>
<tr>
<td>Moeljono, Soetjipto</td>
<td>235</td>
</tr>
<tr>
<td>Mohanty, Nitya Prakash</td>
<td>179</td>
</tr>
<tr>
<td>Molinatti, Grégoire</td>
<td>130</td>
</tr>
<tr>
<td>Moll, Don</td>
<td>212</td>
</tr>
<tr>
<td>Mondreti, Ravichandra</td>
<td>194</td>
</tr>
<tr>
<td>Monnet, Anne-Christine</td>
<td>246</td>
</tr>
<tr>
<td>Monsegur, Omar</td>
<td>76</td>
</tr>
<tr>
<td>Monteiro, Filipa</td>
<td>83</td>
</tr>
<tr>
<td>Monteiro, Gilda</td>
<td>82</td>
</tr>
<tr>
<td>Montes, Elba</td>
<td>176</td>
</tr>
<tr>
<td>Monzón-Angiello, Catalina</td>
<td>177</td>
</tr>
<tr>
<td>Moore, Niall</td>
<td>151</td>
</tr>
<tr>
<td>Moreira, Xoaquín</td>
<td>63</td>
</tr>
<tr>
<td>Moreu, Ignacio</td>
<td>188</td>
</tr>
<tr>
<td>Morion, Céline</td>
<td>39</td>
</tr>
<tr>
<td>Morlon, Hélène</td>
<td>70, 71</td>
</tr>
<tr>
<td>Mort, M. E.</td>
<td>75</td>
</tr>
<tr>
<td>Mossion, Raphaël</td>
<td>20</td>
</tr>
<tr>
<td>Mouchet, Maud</td>
<td>245</td>
</tr>
<tr>
<td>Mouillot, David</td>
<td>229</td>
</tr>
<tr>
<td>Moumou, Jessica</td>
<td>205</td>
</tr>
<tr>
<td>Mouquet, Pascal</td>
<td>36</td>
</tr>
<tr>
<td>Moura, M.</td>
<td>75</td>
</tr>
<tr>
<td>Moura, Mónica</td>
<td>79, 83</td>
</tr>
<tr>
<td>Moutoussamy, Marie-Ludders</td>
<td>99</td>
</tr>
<tr>
<td>Muñoz, Jesús</td>
<td>293</td>
</tr>
<tr>
<td>Munoz, François</td>
<td>104</td>
</tr>
<tr>
<td>Munzinger, Jérôme</td>
<td>265</td>
</tr>
<tr>
<td>Nabholz, Benoît</td>
<td>118</td>
</tr>
<tr>
<td>Naïkäti, Alivereti</td>
<td>224</td>
</tr>
<tr>
<td>Naranjo-Cigala, Agustín</td>
<td>276</td>
</tr>
<tr>
<td>Neto, Ana Isabel</td>
<td>188</td>
</tr>
<tr>
<td>Nibouche, Samuel</td>
<td>99</td>
</tr>
<tr>
<td>Nicet, Jean-Benoît</td>
<td>44</td>
</tr>
<tr>
<td>Nicolas, Violaine</td>
<td>278</td>
</tr>
<tr>
<td>Nieblas, Anne-Elise</td>
<td>38</td>
</tr>
<tr>
<td>Nikolić, Natacha</td>
<td>44</td>
</tr>
<tr>
<td>Nogales, Manuel</td>
<td>177, 218, 223</td>
</tr>
</tbody>
</table>
Nogué, Sandra, 270, 275, 276
Norder, Sietze, 270
Notter, Jean-Cyrille, 56
Novotny, Vojtech, 164
Nugent, Alison, 167
Nullet, Michael, 167
Nylander, Johan, 289

O’Connell, Darren, 262
Oboyski, Pete, 234
Obura, David, 44, 146
Oedin, Malik, 175
Olesen, Jens, 223
Oliveira, Paulo, 154
Ollivier gouagna, Gaelle, 131
Onstein, Renske E., 286
Onzade, Charafouddine, 131
Orlowski, Sabine, 295, 298
Oroshy, Alison, 133
Oromí, Pedro, 94
Ortega, Joaquín, 287
Osuka, Kennedy, 146
Ouazzani, Jamal, 39
Overcast, Isaac, 69

Päärtel, Meelis, 91
Pérez Delgado, Antonio J., 94
Padayachy, Tarah, 254
Pafilis, Panayiotis, 242
Pailler, T, 65
Palmas, Pauline, 175
Pante, Eric, 199
Papadopoulou, Anna, 287
Papillon, Yves, 175
Patiño, Jairo, 96, 290
Patiño-Martínez, Clara, 177
Paulo, Octavio, 94
Pausé, Jean-marie, 56
Payet, Camille, 60
Payet, Guillaume, 56
Payet, Nicolas, 56
Payet, Terance, 109
Peña-Estévez, Miguel Ángel, 177
Pedersen, Rasmus, 184
Pedro, Neves, 51
Pellens, Roseli, 245, 246
Pelletier, Dominique, 40
Peltier, Aline, 35
Pennobert, Gwennaelle, 44
Pennobert, gwennaelle, 36
Pereira, Cátia, 273
Pereira, Fernando, 94
Perez-Barrales, Rocio, 76
Perez-Lamarque, Benoît, 71
Pergl, Jan, 232, 236
Perring, Anne, 169
Perry, George, 291
Pescott, Oliver L., 151
Petit, Sophie Topa—hyperpage, 224
Peyton, Jodey M., 151
Philippe, Grandcolas, 246
Picot, Frédéric, 56
Pillon, Yohan, 18
Pinet, Patrick, 60, 112, 198
Pinheiro, Hudson, 142
Pinho, Catarina Jesus, 113
Piquet, Julien C., 177
Piquet, Julien Christophe, 154
Pla-Rabes, Sergi, 273
Pleguezuelos, Juan M., 176
Plot, Virginie, 129
Polder, Anuschka, 41
Pollock, Henry, 208
Potín, Gaël, 129, 298
Potter, Murray, 180
Poulin, Elie, 252
Poundavanon, Nila, 56
Pouteau, Robin, 166, 247
Prestes, Afonso C. L., 188
Price, Gilbert, 137
Price, Jonathan, 201
Proios, Konstantinos, 24
Puente, Alberto, 76
Pukala, Tara, 224
Puppo, Pamela, 31
Puspaningrum, Mika, 137
Puttoo, M., 22
Pyšek, Petr, 232, 236

Quetel, Clément, 153
Quimbayo, Juan Pablo, 143
Révillion, Christophe, 35, 36
Rabitsch, Wolfgang, 151
Raine, André, 59, 300
Rajaonarivelo, Herimino Manoa, 255
Rakotoarison, Alain, 131
Ramamonjisoa, Bruno, 255
Ramasindrazana, Beza, 22
Rampal, Etienne S., 285
Randalana, Roger, 159
Raposeiro, Pedro M., 273
Rasamoelina, Harena, 131
Raselimanana, Miary, 248
Rasoloarijaon, Tsiory Manpinona, 123
Rasoloarivao, Henriette, 123
Rau, E-Ping, 106
Ravaomanarivo, Lala H. R., 99
Razafindraibe, Nivohanitra Perle, 181
Rebelo, Rui, 113
Rego, Carla, 94
Rehm, Evan, 208
Reinegger, Raphael, 210
Renner, Susanne, 163
Rewoicz, Tomasz, 249
Reynolds, Graham, 241
Ricardo, Haroun, 51
Richardson, David, 186
Richter, Nicole, 35
Richter, Nora, 273
Riethmüller, Martin, 60, 198
Rigal, François, 92, 94
Rigault, Frédéric, 175
Rijsdijk, Kenneth, 270
Rineck, Nicolas, 185
Ringler, David, 153, 295
Rios, Jesus, 76
Ritter, Catarina, 273
Rivière, Eric, 115
Rizal, Yan, 137
Roberts, Georgina, 272
Roberts, Jason, 189
Roberts, Patrick, 137
Rocamora, Gérard, 299
Rocamora, Gerard, 111, 195
Rocha, Claudia, 142
Rocha, Luiz, 142, 144
Rochat, Jacques, 98
Roche, Ronan, 146
Rodríguez-Luengo, Juan Luis, 114, 154
Rogers, Haldre, 208
Romeiras, Maria, 82, 83, 94, 113, 270
Rominger, Andrew, 68
Ronquist, Fredrik, 289
Roos, David, 40, 52
Ros-Prieto, Alejandro, 94
Rosa, Johany, 36
Rouget, Mathieu, 56
Rouyer, Tristan, 38
Rowlands, Gwilym, 146
Roxo, Guilherme, 83
Roy, Helen, 151
Rueda, Alexandra, 29
Ruegg, Kristen, 30
Ruiz Sueiro, Leticia, 176
Rule, Susan, 272
Rull, Valentí, 273
Russell, James, 150, 190, 291, 296
Sáez, Alberto, 273
Saïd Hassane, Charifat, 39
Sadeyen, Joëlle, 99
Sadler, Ross, 243
Said Ahmed, Bedja, 131
Salcedo-Castellano, Antonia, 290
Samadi, Sarah, 199
Samoilys, Melita, 44, 146
Sanchez, Barbara, 76
Sanchez, Cheryl, 193, 195
Sanmartín, Isabel, 289
Santos, Ana M. C., 275
Santos, Bárbara, 113
Sarmento Cabral, Juliano, 267
Saunier, Merlène, 295
Sauer, Christophe, 196
Savelii, Marie-Paule, 46
Sayol, Ferran, 119
Scanlon, Annette T., 224
Schaefer, H., 75
Schelling, Esther, 131
Schleyer, Michael, 44, 50
Schoeman, M. Corrie, 22
Schrader, Julian, 235
Schumann, Russell, 224
Schweiger, Silke, 280
Seguro, Mariana, 113
Sendell-Price, Ashley, 30
Senterre, Bruno, 207, 254
Sere, Mathieu, 44
Sfenthourakis, Spyros, 24
Shabtay, Ateret, 129
Shiels, Aaron, 221
Si, Xingfeng, 103
Siers, Shane, 300
Silva, Luis, 83
Simberloff, Daniel, 204
Simon, Thiouy, 142
Siverio, Felipe, 222
Smart, Utpal, 27
Smith Abbott, Joseph, 74
Smith, Annabel L, 262
Smith, Eric, 27
Smith, Franz, 48
Smith, Tessa, 74
Snorrason, Sigurdur S., 33
Solier, E., 58
Sommeri-Klein, Guilhem, 70
Sookar, Preeaduth, 181
Sookharea, Rajendraprasad, 22
Soubeiran, Yohann, 152
Souharce, Patxi, 60, 198
Soulaimana Mattoir, Yahaia, 60
Stéwart, Tariq, 292
Stamenooff, Pierre, 168, 203
Steffen, Freitag, 167
Stein, Anke, 232
Steinbauer, Manuel, 89, 93, 102, 119, 275
Stoch, Fabio, 249
Strasberg, Dominique, 15, 56, 98, 169, 211
Stravens, Vicky, 207
Sucré, Elliott, 52
Sustache, Jose, 76
Suyama, Yoshihisu, 121
Svenning, J-C, 184
Svenning, Jen-Christian, 286
Török, Péter, 258
Tóthméresz, Béla, 257, 258
Tabau, Anne-Sophie, 126
Tadić, Zoran, 242
Tanguy, Vincent, 81
Tavares de Moura, Mónica Maria, 149
Taverne, Maxime, 242
Taylor, Amanda, 232, 233
Techer, Maéva Angélique, 123
Thébaud, Christophe, 98, 118
Thiann-Bo-Morel, Marie, 126
Thibault, Martin, 180
Thierry, Hugo, 208
Thomas, Hermann, 56
Tingley, Morgan, 103
Tinker, M.Tim, 59
Tintillier, Florent, 39
Tornos, Jérémy, 197
Tortosa, Pablo, 22
Toukeridou, Evropi, 122
Travers, Marc, 59
Traveset, Anna, 218, 220, 223
Triantis, Kostas A., 24, 92
Tricarico, Elena, 151
Trigas, Panagiotis, 92
Trigo, Ricardo M., 273
Trihascaryo, Agus, 137
Triolo, Julien, 56
Trougakos, Ioannis P., 39
Truong, Pascal, 203
Tseng, Han, 167
Tulet, Pierre, 169
Turquet, Vincent, 56
Turvey, Kath, 151
Tye, Alan, 149
Ushimaru, Atushi, 215
Utge, Jose, 278
Vázquez-Loureiro, David, 237
Vaïtlingom, Mickaël, 169
Valente, Luis, 139
Valkó, Oroslya, 257, 258
van der Ent, Antony, 18
van der Geer, Alexandra, 135
Van der Schyff, Veronica, 41
van Kleunen, Mark, 232, 236
van Loon, Emiel, 230
Vanderpoorten, Alain, 293
VanderWerf, Eric, 300
Vandrot, Hervé, 247
Vargas, Pablo, 223
Varlack, Lynda, 74
Vasconcelos, Raquel, 113
Vasilopoulou-Kampitsi, Menelia, 242
Vedder, Daniel, 267
Velez, Jeanine, 76
Veron, Geraldine, 174
Veron, Simon, 245
Vetaas, Ole, 256
Vidal, Eric, 175, 297
Vignal, Alain, 123
Villafuerte, Rafael, 114
Villalaz, Jesus, 262
Villeneuve, Nicolas, 35
Vincenot, Christian E., 108
Viruel, Juan, 76
Vogler, Alfréd P., 72
Wagner, Michael, 254
Wagner, Warren, 120
Watanabe, Kenta, 218
Watari, Yuya, 110
Weigelt, Patrick, 91, 102, 232, 233, 236
Weimerskirch, Henri, 197
Weisenberger, Lauren, 78
Wenzkowski, Christine, 39
White, Cian, 262
White, G., 75
Whittaker, Robert J., 267, 275
Wietels, Alexandre, 172
Wiegand, Kerstin, 267
Wieringa, Jan, 232
Wilkinson, David A., 22
Willis, Kathy, 275
Wilmshurst, Janet, 221, 275, 276
Wilson, James, 262
Wilwert, Elodie, 285
Winchester, Cody, 167
Winter, Marten, 232, 236
Witman, Jon D., 48
Wolkis, Dustin, 78
Wood, Jamie, 276
Woodfield Pascoe, Nancy, 74
Wotton, Debra, 218, 221
Wu, Lingbing, 21
Wysocka, Anna, 249

Xing, Shuang, 98

Yang, Qiang, 262
Yeung Shi Chung, C, 58
Yongsong, Huang, 273
Yoshinaga, Alvin, 78

Zaim, Yahdi, 137
Zanatta, Florian, 293
Zawadzki, Atun, 209
Zhonglang, Wang, 216
Zimmer, Elizabeth, 120
Zizka, Alexander, 227, 283
Zotz, Gerhard, 233